首页 > 论文 > 光谱学与光谱分析 > 38卷 > 1期(pp:26-30)

宽光谱干涉显微术快速提取内指纹

Broad Band Source Based Interferometric Microscopy for Fast Reading Internal Fingerprint

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

指纹识别是一种广泛应用的生物特征识别技术, 但现有指纹身份识别装置由于容易被指纹膜欺骗而存在安全问题, 手指表面弄脏、 太湿或者磨损也会导致识别失效, 存在鲁棒性差的问题。 手指内部220~550 μm的皮肤层, 具有表面(外部)指纹相同的拓扑特征。 这些内部层, 充当“主模板”导致外部指纹按照它的形状生长, 另外, 手指内部的汗腺和微血管结构也和指纹有跟随形状。 这些皮下指纹, 和对应层面的汗腺等组织结构, 具有终生不变性, 我们称之为内指纹。 内指纹难以仿制, 可以用于准确而高度鲁棒的生物身份识别。 但是目前报道的用扫频层析术获得内指纹图像, 由于对二维正面图像提取需要扫描, 并最终从三维指纹结构中重构正面图像, 数据量大, 提取速度太慢, 限制了其实用性。 提出一种基于宽光谱干涉显微术的手指皮肤下内部指纹成像系统, 以宽光谱弱相干白光激光实现3.5 μm轴向分辨率, 采用低数值孔径的光路提高了穿透深度, 利用光源空间非相干性和阵列探测器无需扫描一次性获得6.14 mm×6.14 mm的内指纹图像, 实现了0.4 s每帧的快速读取, 并以三维分层图像展示了手指内部指纹, 及其汗腺结构等特征, 该工作确认了宽广谱干涉显微术快速提取内指纹用于生物识别的可行性, 为高安全度生物识别提供了新方法。

Abstract

Using fingerprint to identify an individual has been accepted since the nineteenth century, and the fingerprint has become one of the most widely used biometric characteristics. Current modern fingerprint recognition systems are based on the print pattern of the finger surface, and the most commonly used fingerprint sensors are based on frustrated total internal reflection, which produce fingerprint images by reflecting light from only those parts of the skin-glass interface that are not in contact. Those are not robust against spoof attaching, and will fail when finger get dirty, wet or even get flattened associated with age. Nevertheless, in the depth of 220~550 μm under the external fingerprint, there is a layer of skin inside a finger with the same topographical features as the surface (external) fingerprint. This internal layer serves as a “master template” from which the external fingerprint grows. Moreover, within the internal structures of a finger, the sweat pores and microvascular structure will also follow the template. we name it as internal fingerprint, which will not change during the whole life period. Internal fingerprint is difficult to make a fake pattern. In addition, it does not have creases, never dirty, scarred or too wet/dry to make sensor difficult to produce good quality images. Therefore, with High security and robustness, internal fingerprint is ideal as a new way for biometric identification. Currently, there are not many different types of sensors on the market that are able to gather information from the inside of a finger. Optical coherence tomography (OCT) possesses optical sectioning capability and is able to image deep in tissue. By fast standard OCT techniques, such as swept-source OCT (SS-OCT), which can first build a 3-D data volume by point-by-point raster-scanning of A-scan (signal signature along optical axis) , and then a single en face 2-D image at a specific depth can be reconstructed. It needs large memory to store the 3-D data and takes longer time to reconstruct the en face images, but its feasibility is limited. In contrast, full-field OCT (FFOCT) can acquire a single en face image without having to acquire 3-D data set, and therefore, produce much smaller image size (a few Mb) and potentially can be faster. Boccara group has implemented an internal fingerprint reader with InGaAs camera based FFOCT system.In this paper, with cheap CCD camera, we implemented a fast interferometric microscopy with broad band light source for taking the internal fingerprint under the finger skin. The broad band white light laser provided axial resolution of 3.5 μm, with low numerical number illumination, and penetration depth is increased. Thanks to the space incoherence, the arrayed detector can extract the full field en face tomography image without scanning. We demonstrated the 3D structure of the internal fingerprint, including its sweat pores structure, obtained the 2D internal fingerprint image at the speed of 0.4 s per frame. Our work confirmed the capacity of the internal fingerprint for high fidelity biometric identification and provided interferometric microscopy as its reader.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3964/j.issn.1000-0593(2018)01-0026-05

基金项目:国家自然科学基金项目(61475199), 中科院威高计划([2017]013)资助

收稿日期:2016-09-01

修改稿日期:2017-01-30

网络出版日期:--

作者单位    点击查看

王金玉:中国科学院重庆绿色智能技术研究院集成光电技术研究中心, 重庆 400714
雷 鸣:国防科技信息研究中心, 北京 100048
尹韶云:中国科学院重庆绿色智能技术研究院集成光电技术研究中心, 重庆 400714
李 刚:军械工程学院电子与光学工程系, 河北 石家庄 050003
汪岳峰:军械工程学院电子与光学工程系, 河北 石家庄 050003

联系人作者:王金玉(jinyu.WANG@cigit.ac.cn)

备注:王金玉, 1972年生, 中国科学院重庆绿色智能技术研究院集成光电技术研究中心研究员

【1】Liu Gangjun, Chen Zhongping. Applied Optics, 2013, 52: 5473.

【2】Maltoni D, Maio D, Jain A K, et al. Handbook of Fingerprint Recognition. New York; Springer Publishing Company, Incorporated, 2009. 496.

【3】Miura N, Nagasaka A, Miyatake T. Machine Vision and Applications, 2004, 15: 194.

【4】Holder E H, Robinson L O, Laub J H. National Institute of Justice Journal, 2011.

【5】Jain A K, Chen Y, Demirkus M. IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29(1): 15.

【6】Sangiorgi S, Manelli A, Congiu T, et al. Journal of Anatomy, 2004, 204(2): 123.

【7】Cheng Y, Larin K V. Applied Optics, 2006, 45(36): 9238.

【8】Cheng Y, Larin K V. IEEE Photonics Technology Letter, 2007, 19(20): 1634.

【9】Beaurepaire E, Boccara A C, Lebec M, et al. Optics Letters, 1998, 23(4): 244.

【10】Arnaud Dubois, Laurent Vabre, Albert-Claude Boccara, et al. Applied Optics, 2002, 41(4): 805.

【11】Auksorius E, Boccara A C. Biomedical Optics Express, 2015; 6(11): 4465. doi:10.1364/BOE.6.004465.

【12】ZHU Yue, GAO Wan-rong, GUO Ying-cheng(朱 越, 高万荣, 郭英呈). Acta Optica Sinica, 2015, 35(5): 0517001.

【13】Vabre L, Dubois A, Boccara A C. Optics Letters, 2002, 27(7): 530.

【14】Labiau S, David G, Gigan S, et al. Optics Letters, 2009, 34(10): 1576.

【15】Bossen A, Lehmann R, Meier C. IEEE Photonics Technology Letter, 2010, 22(7): 507.

引用该论文

WANG Jin-yu,LEI Ming,YIN Shao-yun,LI Gang,WANG Yue-feng. Broad Band Source Based Interferometric Microscopy for Fast Reading Internal Fingerprint[J]. Spectroscopy and Spectral Analysis, 2018, 38(1): 26-30

王金玉,雷 鸣,尹韶云,李 刚,汪岳峰. 宽光谱干涉显微术快速提取内指纹[J]. 光谱学与光谱分析, 2018, 38(1): 26-30

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF