首页 > 论文 > 中国激光 > 45卷 > 2期(pp:207009--1)

生物细胞定量相位测量与恢复方法研究进展

Progress on Methods of Quantitative Phase Measurement and Retrieval for Biological Cells

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

细胞定量相位测量与恢复方法采用免标记非干预式的检测手段,实现静态及动态生物样本空间形态的定量重构,为细胞动力学过程中复杂生物物理信息的可视化检测提供了实现条件。重点介绍同步相移式、数字全息式和流体聚焦式等新型动态生物细胞相位检测技术,同时简要综述同轴干涉与离轴干涉式的传统静态细胞相位检测技术的发展。对各种方法的采样速率、成像分辨率、细胞检测精度等关键参数进行比较,阐明不同测量方法适用的生物信息检测类型及应用领域,同时介绍动态与静态细胞相位检测中对应各类相位恢复方法的特点与发展。

Abstract

The phase measurement methods for label-free cells, as non-invasive methods, are applied to realizing the quantitative reconstruction for spatial morphologies of static and dynamic biological samples. It can provide implementable conditions for visualizing complex biophysical information in the process of cell dynamic detection. The novel phase detection technologies for dynamic cells are mainly described, such as the synchronous phase shift methods, the digital holographic methods, and the methods for focused fluid. The traditional phase detection technologies for static cells are reviewed briefly. Then the key parameters of these technologies are compared, such as sampling rate, imaging resolution, and detection accuracy. Furthermore, we illustrate their application fields considering their various biological information detections. Finally, the basic principles, technical characteristics and recent developments for various phase retrieval technologies are analyzed and summarized.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O438

DOI:10.3788/cjl201845.0207009

所属栏目:“生物医学光子学新技术及进展”专题

基金项目:国家自然科学基金(61405155)、中国博士后科学基金(2016M602807)

收稿日期:2017-09-15

修改稿日期:2017-10-31

网络出版日期:--

作者单位    点击查看

张璐:西安交通大学机械学院, 陕西 西安 710049
赵春晖:西安交通大学机械学院, 陕西 西安 710049
康森柏:西安交通大学机械学院, 陕西 西安 710049
赵宏:西安交通大学机械学院, 陕西 西安 710049
张春伟:西安交通大学机械学院, 陕西 西安 710049
袁莉:西安交通大学第一附属医院检验科, 陕西 西安 710049

联系人作者:张璐(gingerluzhang@mail.xjtu.edu.cn)

备注:张璐(1981—),女,博士,副教授,博士生导师,主要从事生物光学检测方面的研究。E-mail:

【1】Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects part II[J]. Physica, 1942, 9(10): 974-980.

【2】Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects[J]. Physica, 1942, 9(7): 686-698.

【3】Munoz V H F, Ortiz B L, Toto-Arellano N I, et al. Single-shot phase shifting interferometry for microscopic measurements of non-birefringent transmissive phase samples[C]//Emerging Challenges for Experimental Mechanics in Energy and Environmental Applications, Proceedings of the 5th International Symposium on Experimental Mechanics and 9th Symposium on Optics in Industry (ISEM-SOI), 2015. Springer International Publishing, 2017: 221-225.

【4】Lechuga L G, Toto-Arellano N I, Munoz V H F, et al. Phase shifting interferometry using a coupled cyclic path interferometers[C]//Emerging Challenges for Experimental Mechanics in Energy and Environmental Applications, Proceedings of the 5th International Symposium on Experimental Mechanics and 9th Symposium on Optics in Industry (ISEM-SOI), 2015. Springer International Publishing, 2017: 65-69.

【5】Toto-Arellano N I. 4D measurements of biological and synthetic structures using a dynamic interferometer[J]. Journal of Modern Optics, 2017: 1-10.

【6】Cintora P, Arikkath J, Kandel M, et al. Cell density modulates intracellular mass transport in neural networks[J]. Cytometry Part A, 2017, 91(5): 503-509.

【7】Kandel M E, Fernandes D, Taylor A M, et al. Three-dimensional intracellular transport in neuron bodies and neurites investigated by label-free dispersion-relation phase spectroscopy[J]. Cytometry Part A, 2017, 91(5): 519-526.

【8】Li S S. Study and system optimization of simultaneous phase-shifting interferometer for measurement of the height of living cells[D]. Beijing: Beijing Institute of Technology, 2015.
李帅帅. 基于同步相移干涉的活体细胞高度测量方法研究及系统优化[D]. 北京: 北京理工大学, 2015.

【9】Wang M. Height measurement of living cells based on multi-phase interference microscopy[D]. Beijing: Beijing Institute of Technology, 2011.
王萌. 基于多相位干涉显微技术的活体细胞高度测量[D]. 北京: 北京理工大学, 2011.

【10】Jin D, Sung Y, Lue N, et al. Large population cell characterization using quantitative phase cytometer[J]. Cytometry Part, A 2017, 91(5): 450-459.

【11】Guo P, Huang J, Moses M A. Characterization of dormant and active human cancer cells by quantitative phase imaging[J]. Cytometry Part A, 2017, 91(5): 424-432.

【12】Roitshtain D, Wolbromsky L, Bal E, et al. Quantitative phase microscopy spatial signatures of cancer cells[J]. Cytometry Part A, 2017, 91(5): 482-493.

【13】Janicke B, Krsns A, Egelberg P, et al. Label-free high temporal resolution assessment of cell proliferation using digital holographic microscopy[J]. Cytometry Part A, 2017, 91(5): 460-469.

【14】Luther E, Mendes L P, Pan J, et al. Applications of label-free, quantitative phase holographic imaging cytometry to the development of multi-specific nanoscale pharmaceutical formulations[J]. Cytometry Part A, 2017, 91(5): 412-423.

【15】Kastl L, Isbach M, Dirksen D, et al. Quantitative phase imaging for cell culture quality control[J]. Cytometry Part A, 2017, 91(5): 470-481.

【16】Yang S A, Yoon J, Kim K, et al. Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson′s disease[J]. Cytometry Part A, 2017, 91(5): 510-518.

【17】Zhang Y Z. Phase-contrast imaging in digital holographic microscopy for biological samples[D]. Beijing: Beijing University of Technology, 2012.
张亦卓. 生物样品的数字全息显微相衬成像技术研究[D]. 北京: 北京工业大学, 2012.

【18】Cui H K. Phase aberration compensation in digital holographic microscopy for biological cells[D]. Beijing: Beijing University of Technology, 2011.
崔华坤. 生物细胞数字全息显微成像的相位畸变校正[D]. 北京: 北京工业大学, 2011.

【19】Pan F, Xiao W, Liu S. Digital holographic microscopy for long-term quantitative phase-contrast imaging of living cells[J]. Chinese Journal of Lasers, 2011, 38(5): 0509001.
潘锋, 肖文, 刘烁. 一种适用于长期定量观察生物活细胞的数字全息显微方法[J]. 中国激光, 2011, 38(5): 0509001.

【20】Ma L H, Wang H, Jin H Z, et al. Experimental study on quantitative phase imaging by digital holographic microscopy[J]. Chinese Journal of Lasers, 2012, 39(5): 0309002.
马利红, 王辉, 金洪震, 等. 数字全息显微定量相位成像的实验研究[J]. 中国激光, 2012, 39(5): 0309002.

【21】Darzynkiewicz Z, Bedner E, Li X, et al. Laser-scanning cytometry: A new instrumentation with many applications[J]. Experimental Cell Research, 1999, 249(1): 1-12.

【22】Pozarowski P, Holden E, Darzynkiewicz Z. Laser scanning cytometry: principles and applications——an update[M]// Cell Imaging Techniques. Totowa: Humana Press, 2012: 187-212.

【23】Harnett M M. Laser scanning cytometry: understanding the immune system in situ[J]. Nature Reviews Immunology, 2007, 7(11): 897-904.

【24】Henriksen M. Quantitative imaging cytometry: instrumentation of choice for automated cellular and tissue analysis[J]. Nature Methods, 2010, 7: 1449-1450.

【25】Hutcheson J A, Khan F Z, Powless A J, et al. A light sheet confocal microscope for image cytometry with a variable linear slit detector[C]. SPIE Bios, 2016, 9720: 97200U.

【26】Oheim M. Advances and challenges in high-throughput microscopy for live-cell subcellular imaging[J]. Expert Opinion on Drug Discovery, 2011, 6(12): 1299-1315.

【27】Cheung M C, Mckenna B, Wang S S, et al. Image-based cell-resolved screening assays in flow[J]. Cytometry Part A, 2015, 87(6): 541-548.

【28】Mckenna B K, Evans J G, Cheung M C, et al. A parallel microfluidic flow cytometer for high content screening[J]. Nature Methods, 2011, 8(5): 401-403.

【29】Basiji D A, Ortyn W E, Liang L, et al. Cellular image analysis and imaging by flow cytometry[J]. Clinics in Laboratory Medicine, 2007, 27(3): 653-670.

【30】McGrath K E, Bushnell T P, Palis J. Multispectral imaging of hematopoietic cells: where flow meets morphology[J]. Journal of Immunological Methods, 2008, 336(2): 91-97.

【31】Vorobjev I A, Barteneva N S. Imaging flow cytometry methods and protocols[M]. New York: Springer Science+Business Media, 2016.

【32】Schmid L, Weitz D A, Franke T. Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter[J]. Lab on A Chip, 2014, 14(19): 3710-3718.

【33】Ren L Q, Chen Y C, Li P, et al. A high-throughput acoustic cell sorter[J]. Lab on A Chip, 2015, 15(19): 3870-3879.

【34】Shields IV C W, Reyes C D, López G P. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation[J]. Lab on A Chip, 2015, 15(5): 1230-1249.

【35】Schonbrun E, Gorthi S S, Schaak D. Microfabricated multiple field of view imaging flow cytometry[J]. Lab on A Chip, 2012, 12(2): 268-273.

【36】Goda K, Tsia K K, Jalali B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena[J]. Nature, 2009, 458(7242): 1145-1149.

【37】Goda K, Motafakker-Fard A, Tsia K K, et al. Serial time encoded amplified microscopy (STEAM) for high-throughput detection of rare cells[C]. Photonics Society Winter Topicals Meeting Series, IEEE, 2010: 64-65.

【38】Goda K, Ayazi A, Gossett D R, et al. High-throughput single-microparticle imaging flow analyzer[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(29): 11630-11635.

【39】Chen C L, Mahjoubfar A, Tai L C, et al. Deep learning in label-free cell classification[J]. Scientific Reports, 2016, 6: 21471.

【40】Jiang Y, Lei C, Yasumoto A, et al. Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy[J]. Lab on A Chip, 2017, 17(14): 2426-2434.

【41】Huang E, Ma Q, Liu Z W. Ultrafast imaging using spectral resonance modulation[J]. Scientific Reports, 2016, 6: 25240.

【42】Goda K, Jalali B. Dispersive Fourier transformation for fast continuous single-shot measurements[J]. Nature Photonics, 2013, 7(2): 102-112.

【43】LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.

【44】Guo B, Lei C, Kobayashi H, et al. High-throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic time-stretch quantitative phase microscopy[J]. Cytometry Part A, 2017, 91(5): 494-502.

【45】Isikman S O, Bishara W, Ozcan A. Partially coherent lens-free tomographic microscopy[J]. Applied Optics, 2011, 50(34): H253-H264.

【46】Mudanyali O, Tseng D, Oh C, et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications[J]. Lab on A Chip, 2010, 10(11): 1417-1428.

【47】Xue L. Optical microscopy imaging and its application in bio-sample display and measurement[D]. Nanjing: Nanjing University of Science and Technology, 2013.
薛亮. 光学显微成像及在生物样品显示与测量中的应用[D]. 南京: 南京理工大学, 2013.

【48】Chen Y Z, Ji Y, Xie M, et al. Phase microscopy imaging method based on common-path without micro-objective[J]. Laser & Optoelectronics Progress, 2015, 52(12): 121702.
陈映洲, 季颖, 谢铭, 等. 免显微物镜的共光路相位显微成像方法[J]. 激光与光电子学进展, 2015, 52(12): 121702.

【49】Allier C, Morel S, Vincent R, et al. Imaging of dense cell cultures by multiwavelength lens-free video microscopy[J]. Cytometry Part A, 2017, 91(5): 433-442.

【50】Merola F, Barroso , Miccio L, et al. Biolens behavior of RBCs under optically-induced mechanical stress[J]. Cytometry Part A, 2017, 91(5): 527-533.

【51】Vargas J, Quiroga J A, Sorzano C O S, et al. Two-step demodulation based on the Gram-Schmidt orthonormalization method[J]. Optics Letters, 2012, 37(3): 443-445.

【52】Niu W H, Zhong L Y, Sun P, et al. An improved two-step phase-shifting algorithm based on Gram-Schmidt orthonormalization[J]. Chinese Journal of Lasers, 2015, 42(6): 0608002.
牛文虎, 钟丽云, 孙鹏, 等.一种改进的施密特正交化两步相移算法[J]. 中国激光, 2015, 42(6): 0608002.

【53】Cui J H, Wang H L, Lü X X, et al. The application of an improved phase unwrapping method in measurement the phase of cells[J]. Laser Journal, 2015, 36(10): 62-65.
崔俊宏, 王翰林, 吕晓旭, 等. 一种改进的解包算法在细胞相位测量上的应用[J]. 激光杂志, 2015, 36(10): 62-65.

【54】Bhaduri B, Popescu G. Derivative method for phase retrieval in off-axis quantitative phase imaging[J]. Optics Letters, 2012, 37(11): 1868-1870.

【55】Xu Y Y, Wang Y W, Jin W F, et al. A new method of phase derivative extracting for off-axis quantitative phase imaging[J]. Optics Communications, 2013, 305: 13-16.

【56】Alanazi H, Canul A J, Garman A, et al. Robust microbial cell segmentation by optical-phase thresholding with minimal processing requirements[J]. Cytometry Part A, 2017, 91(5): 443-449.

【57】Popescu G, Deflores L P, Vaughan J C, et al. Fourier phase microscopy for investigation of biological structures and dynamics[J]. Optics Letters, 2004, 29(21): 2503-2505.

【58】Popescu G, Badizadegan K, Feld M S, et al. Quantitative phase imaging of live cells using fast Fourier phase microscopy[J]. Applied Optics, 2007, 46(10): 1836-1842.

【59】Wang Z, Millet L, Mir M, et al. Spatial light interference microscopy (SLIM)[J]. Optics Express, 2011, 19(2): 1016-1026.

【60】Bhaduri B, Wickland D, Wang R, et al. Cardiac myocyte imaging using real-time spatial light interference microscopy (SLIM)[J]. PloS One, 2013, 8(2): e56930.

【61】Tan H N, Popescu G. Spatial light interference microscopy (SLIM) using twisted-nematic liquid-crystal modulation[J]. Biomedical Optics Express, 2013, 4(9): 1571-1583.

【62】Bhaduri B, Tangella K, Popescu G. Fourier phase microscopy with white light[J]. Biomedical Optics Express, 2013, 4(8): 1434-1441.

【63】Wax A, Ehlers M D, Shaked N T, et al. Parallel on-axis holographic phase microscopy of biological cells and unicellular microorganism dynamics[J]. Applied Optics, 2010, 49(15): 2872-2878.

【64】Choi W, Fang-Yen C, Badizadegan K, et al. Tomographic phase microscopy[J]. Nature methods, 2007, 4(9): 717-719.

【65】Marquet P, Rappaz B, Magistretti P J, et al. Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy[J]. Optics Letters, 2005, 30(5): 468-470.

【66】Popescu G, Ikeda T, Dasari R R, et al. Diffraction phase microscopy for quantifying cell structure and dynamics[J]. Optics Letters, 2006, 31(6): 775-778.

【67】Pham H V, Bhaduri B, Tangella K, et al. Real time blood testing using quantitative phase imaging[J]. PloS One, 2013, 8(2): e55676.

【68】Bhaduri B, Pham H, Mir M, et al. Diffraction phase microscopy with white light[J]. Optics Letters, 2012, 37(6): 1094-1096.

【69】Pham H V, Edwards C, Goddard L L, et al. Fast phase reconstruction in white light diffraction phase microscopy[J]. Applied Optics, 2013, 52(1): A97-A101.

【70】Xu Y Y. Fast phase retrieval method and imaging technology of cells based on interference microscopy[D]. Zhenjiang: Jiangsu University, 2017.
徐媛媛. 干涉显微细胞相位快速恢复方法及成像技术的研究[D]. 镇江: 江苏大学, 2017.

【71】Ikeda T, Popescu G, Dasari R R, et al. Hilbert phase microscopy for investigating fast dynamics in transparent systems[J]. Optics letters, 2005, 30(10): 1165-1167.

【72】Kemper B, Carl D, Schnekenburger J,et al. Investigation of living pancreas tumor cells by digital holographic microscopy[J]. Journal of Biomedical Optics, 2006, 11(3): 034005.

【73】Kemper B, Vollmer A, Rommel C E, et al. Simplified approach for quantitative digital holographic phase contrast imaging of living cells[J]. Journal of Biomedical Optics, 2011, 16(2): 026014.

【74】Chalut K J, Brown W J, Wax A. Quantitative phase microscopy with asynchronous digital holography[J]. Optics Express, 2007, 15(6): 3047-3052.

【75】Shaked N T, Rinehart M T, Wax A. Dual-interference-channel quantitative-phase microscopy of live cell dynamics[J]. Optics Letters, 2009, 34(6): 767-769.

【76】Gao P, Yao B, Harder I, et al. Parallel two-step phase-shifting digital holograph microscopy based on a grating pair[J]. Journal of the Optical Society of America A Optics Image Science & Vision, 2011, 28(3): 434-440.

【77】Gao P, Yao B L, Min J, et al. Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters[J]. Optics Express, 2011, 19(3): 1930-1935.

【78】Liu J, Tian A L, Liu B C, et al. A phase extraction algorithm in wavelength tuning interferometry[J]. Acta Optica Sinica, 2014, 34(3): 0312001.
刘剑, 田爱玲, 刘丙才, 等. 一种变频相移干涉测量的相位提取算法[J]. 光学学报, 2014, 34(3): 0312001.

【79】Shaked N T, Zhu Y, Rinehart M T, et al. Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells[J]. Optics Express, 2009, 17(18): 15585-15591.

【80】Ina H, Takeda M, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Review of Scientific Instruments, 2015, 72(12): 156-160.

【81】Ding H, Berl E, Wang Z, et al. Fourier transform light scattering of biological structure and dynamics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(4): 909-918.

引用该论文

Zhang Lu,Zhao Chunhui,Kang Senbai,Zhao Hong,Zhang Chunwei,Yuan Li. Progress on Methods of Quantitative Phase Measurement and Retrieval for Biological Cells[J]. Chinese Journal of Lasers, 2018, 45(2): 0207009

张璐,赵春晖,康森柏,赵宏,张春伟,袁莉. 生物细胞定量相位测量与恢复方法研究进展[J]. 中国激光, 2018, 45(2): 0207009

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF