首页 > 论文 > 激光与光电子学进展 > 55卷 > 2期(pp:23001--1)

激光诱导击穿光谱结合竞争自适应重加权采样算法对猪饲料中铜元素的定量分析

Quantitative Analysis of Copper Element in Pig Feed Using Laser Induced Breakdown Spectroscopy Combined with CARS Algorithm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

饲料中添加铜元素对猪生长速度的促进效果明显, 因而铜元素在猪饲料中的超标情况非常普遍, 但其带来的危害也非常严重。利用共线双脉冲激光诱导击穿光谱(DP-LIBS)技术对猪饲料中的铜元素进行快速定量分析, 采用竞争自适应重加权采样(CARS)算法筛选出与猪饲料中铜元素相关的22个重要变量, 压缩率为1.1%;基于筛选出来的22个重要波长变量, 利用偏最小二乘(PLS)回归方法建立猪饲料中铜元素含量的预测模型, 并对预测集猪饲料样品中的铜元素含量进行预测。结果表明: 与全光谱-PLS模型相比, CARS-PLS模型具有更高的预测精度和预测能力, 模型相关系数、交叉验证均方根误差、平均相对误差分别为0.978、19.25、5.59%。CARS算法可以有效地优化猪饲料中铜元素的激光诱导击穿光谱在线检测模型, 并可以提高模型的预测精度。

Abstract

Feed with copper can accelerate the growth of pigs significantly, so it is common to find feed with excess copper content, but excess copper brings serious consequences. Laser induced breakdown spectroscopy (LIBS) technology is used to quantificationally analyze the copper in pig feed rapidly. Competitive adaptive reweighted sampling (CARS) algorithm screens 22 important wavelength variables which are associated with copper in pig feed with compression ratio of 1.1%. Finally, partial least squares (PLS) regression method is applied to establish the prediction model of copper content in pig feed based on the 22 important wavelength variables, and the copper content in prediction set pig feed samples is predicted. The results show that the CARS-PLS model has higher prediction accuracy and prediction ability than full spectrum-PLS model. The correlation coefficient, the root mean square error of cross validation and the relative error are 0.978, 19.25, 5.59%, respectively. CARS algorithm can effectively optimize the LIBS online detection model of copper in pig feed and improve the prediction accuracy.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O657.38

DOI:10.3788/lop55.023001

所属栏目:光谱学

基金项目:江西省教育厅科学技术研究项目(GJJ160369)

收稿日期:2017-07-10

修改稿日期:2017-09-01

网络出版日期:--

作者单位    点击查看

刘珊珊:江西农业大学工学院, 江西 南昌 330045江西省现代农业装备重点实验室, 江西 南昌 330045
张俊:江西农业大学动物科学技术学院, 江西 南昌 330045
林思寒:江西农业大学工学院, 江西 南昌 330045江西省现代农业装备重点实验室, 江西 南昌 330045
刘木华:江西农业大学工学院, 江西 南昌 330045江西省现代农业装备重点实验室, 江西 南昌 330045江西省果蔬采后处理关键技术与质量安全协同创新中心, 江西 南昌 330045
黎静:江西农业大学工学院, 江西 南昌 330045江西省现代农业装备重点实验室, 江西 南昌 330045江西省果蔬采后处理关键技术与质量安全协同创新中心, 江西 南昌 330045
潘作栋:江西农业大学工学院, 江西 南昌 330045

联系人作者:刘珊珊(592591823@qq.com)

备注:刘珊珊(1992—), 女, 硕士研究生, 主要从事农产品光谱检查技术方面的研究。E-mail: 592591823@qq.com

【1】Jia Y, Deng S J, Liu X, et al. On pharmacokinetics of copper in injection of trace elements to pigs[J]. Journal of Southwestern Normal University (Natural Science Edition), 2013, 38(6): 75-80.
贾艳, 邓世金, 刘曦, 等. 畜禽用复方微量元素注射液中铜元素在猪体内的药物动力学研究[J]. 西南师范大学学报(自然科学版), 2013, 38(6): 75-80.

【2】van der A P, 金立志. 猪配合饲料中铜和锌的需要量的最新研究进展[J]. 饲料工业, 2013, 34(12): 1-5.

【3】马发顺, 成飞飞. 铜元素在养猪生产中的应用[J]. 江西饲料, 2016(4): 8-11.

【4】柏云江. 铜锌砷等过量对饲料安全的影响及对策[J]. 现代畜牧兽医, 2010(3): 55-57.

【5】Ye S M, Li H Y, Chen H Y, et al. Determination of calium, copper, iron, magnesium, manganese, potassium, sodium and zinc in formula feed by inductively coupled plasma-atomic emission spectrometry[J]. Cereal & Feed Industry, 2015(10): 62-64.
叶少媚, 李浩洋, 陈海莹, 等. 电感耦合等离子体发射光谱法测定配合饲料中钙、铜、铁、镁、锰、钾、钠和锌含量的方法研究[J]. 粮食与饲料工业, 2015(10): 62-64.

【6】Wang P L, Su X O, Gao S, et al. Study on the method of using ICP-MS to determine microelements in the animal feed[J]. Spectroscopy and Spectral Analysis, 2007, 27(9): 1841-1844.
王培龙, 苏晓鸥, 高生, 等. 应用电感耦合等离子质谱测定饲料中的微量元素的研究[J]. 光谱学与光谱分析, 2007, 27(9): 1841-1844.

【7】梁兆斌, 韦衢. 微波消解-原子吸收法测定饲料中Pb、Cd、Cu、Zn含量[J]. 畜牧兽医科技信息, 2015(9): 32-34.

【8】Liao F, Li Y.A research on determining copper in feed additive premix with spectrophotometry[J]. Sichuan Animal and Veterinary Sciences, 2001, 28(3): 19-20.
廖峰, 李云. 分光光度法测定饲料添加剂中的铜含量[J]. 四川畜牧兽医, 2001, 28(3): 19-20.

【9】Hahn D W, Omenetto N. Laser-induced breakdown spectroscopy (LIBS)-part I: Review of basic diagnostics and plasma-particle interactions: Still-challenging issues within the analytical plasma community[J]. Applied Spectroscopy, 2010, 64(12): 335-366.

【10】Hahn D W, Omenetto N. Laser-induced breakdown spectroscopy(LIBS)-part II: Review of instrumental and methodological approaches to material analysis and applications to different fields[J]. Applied Spectroscopy, 2012, 66(4): 347-419.

【11】Shen G H, Li H C, Shi Y H. Progress of laser induced breakdown spectroscopy[J]. Metallurgical Analysis, 2016, 36(5): 16-25.
沈桂华, 李华昌, 史烨弘. 激光诱导击穿光谱发展现状[J]. 冶金分析, 2016, 36(5): 16-25.

【12】Yang H, Huang L, Liu M H, et al. Detection of heavy metal Cd in navel orange by LIBS and MWPLS[J]. Laser and Optoelectronics Progress, 2017, 54(8): 083002.
杨晖, 黄林, 刘木华, 等. LIBS结合MWPLS法对脐橙中重金属Cd的检测研究[J]. 激光与光电子学进展, 2017, 54(8): 083002.

【13】Wang C H, Huang L, Liu M H, et al. Determination of heavy metal chromium in rice husk by LIBS couple with SiPLS[J]. Laser and Optoelectronics Progress, 2016, 53(11): 113001.
王彩虹, 黄林, 刘木华, 等. 基于SiPLS模型的稻壳中重金属铬LIBS检测[J]. 激光与光电子学进展, 2016, 53(11): 113001.

【14】Min Q, Su M G, Cao S Q, et al. Investigation of radiation dynamic properties in laser-produced silicon plasma[J]. Scientia Sinica: Physica, Mechanica and Astronomica, 2016, 46(8): 083011.
敏琦, 苏茂根, 曹世权, 等. 激光产生的硅等离子体辐射动力学特性研究[J]. 中国科学: 物理学 力学 天文学, 2016, 46(8): 083011.

【15】Li Y F, Zhang L, Gong Y, et al. Development of laser on-line cement raw material analysis equipment[J]. Spectroscopy and Spectral Analysis, 2016, 36(5): 1494-1499.
李郁芳, 张雷, 弓瑶, 等. 水泥生料品质激光在线检测设备研制[J]. 光谱学与光谱分析, 2016, 36(5): 1494-1499.

【16】Yang Y L, Wang P, Ma C H. Quantitative analysis of liquid steel component by LIBS steel based on improved multivariate nonlinear model[J]. Laser & Optoelectronics Progress, 2016, 53(5): 053002.
杨友良, 王鹏, 马翠红. 基于改进多元非线性模型的LIBS钢液成分定量分析[J]. 激光与光电子学进展, 2016, 53(5): 053002.

【17】Ma S S, Ma Q L, Han L J, et al. Modelling of calcium content in manure using laser-induced breakdown spectroscopy and genetic algorithm combined with partial least squares[J]. Spectroscopy and Spectral Analysis, 2017, 37(5): 1530-1534.
马双双, 马秋林, 韩鲁佳, 等. 基于LIBS和遗传算法的畜禽粪便中钙含量研究[J]. 光谱学与光谱分析, 2017, 37(5): 1530-1534.

【18】Li H D. Fundamental problems of generalized grey analytical system and their research of model population analysis[D]. Changsha: Central South University, 2012.
李洪东. 广义灰色分析体系建模的基本问题及其模型集群分析研究[D]. 长沙: 中南大学, 2012.

【19】Li J B, Peng Y K, Chen L P, et al. Near-infrared hyperspectral imaging combined with CARS algorithm to quantitatively determine soluble solids content in "Ya" pear[J]. Spectroscopy and Spectral Analysis, 2014, 34(5): 1264-1269.
李江波, 彭彦昆, 陈立平, 等. 近红外高光谱图像结合CARS算法对鸭梨SSC含量定量测定[J]. 光谱学与光谱分析, 2014, 34(5): 1264-1269.

【20】Liu Y D, Shi Y, Cai L J, et al. On-line NIR detection model optimization of soluble solids content in navel orange based on CARS[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(9): 138-144.
刘燕德, 施宇, 蔡丽君, 等. 基于CARS算法的脐橙可溶性固形物近红外在线检测[J]. 农业机械学报, 2013, 44(9): 138-144.

【21】动物饲料中钙、铜、铁、锰、钾、钠和锌含量的测定原子吸收光谱法: GB/T 13885—2003[S]. 北京: 中国标准出版社, 2004.

【22】Xiao H B, Zhao J H, Yuan H C, et al. Determination of tetracycline content in pork by synchronous fluorescence spectroscopy with CARS method[J]. Optics and Precision Engineering, 2013, 21(10): 2513-2519.
肖海斌, 赵进辉, 袁海超, 等. 同步荧光光谱结合CARS变量优选预测猪肉中四环素残留含量[J]. 光学 精密工程, 2013, 21(10): 2513-2519.

【23】Sun T, Xu W L, Lin J L, et al. Determination of soluble solids content in navel oranges by Vis/NIR diffuse transmission spectra combined with CARS method[J]. Spectroscopy and Spectral Analysis, 2012, 32(12): 3229-3233.
孙通, 许文丽, 林金龙, 等. 可见/近红外漫透射光谱结合CARS变量优选预测脐橙可溶性固形物[J]. 光谱学与光谱分析, 2012, 32(12): 3229-3233.

【24】Yu L, Zhu Y X, Hong Y S, et al. Determination of soil moisture content by hyperspectral technology with CARS algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(22): 138-145.
于雷, 朱亚星, 洪永胜, 等. 高光谱技术结合CARS算法预测土壤水分含量[J]. 农业工程学报, 2016, 32(22): 138-145.

引用该论文

Liu Shanshan,Zhang Jun,Lin Sihan,Liu Muhua,Li Jing,Pan Zuodong. Quantitative Analysis of Copper Element in Pig Feed Using Laser Induced Breakdown Spectroscopy Combined with CARS Algorithm[J]. Laser & Optoelectronics Progress, 2018, 55(2): 023001

刘珊珊,张俊,林思寒,刘木华,黎静,潘作栋. 激光诱导击穿光谱结合竞争自适应重加权采样算法对猪饲料中铜元素的定量分析[J]. 激光与光电子学进展, 2018, 55(2): 023001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF