首页 > 论文 > 光学学报 > 38卷 > 3期(pp:328003--1)

光子晶体微纳传感技术的理论与实验研究进展

Research Progresses on Theory and Experiments of Photonic Crystal Micronano Sensing Technology

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

光子晶体(PC)微纳传感器具有体积小、易集成、响应时间快、控光能力强、可实现无标签检测以及设计灵活等优点,在工业生产、海洋探测、生物医疗检测及环境监测等领域展现出巨大的应用前景。针对基于一维纳米束PC与二维平板PC的微纳光子传感技术,从传感器结构设计和传感性能提升方面,分析了当前国内外PC微纳传感的关键理论和实验技术进展,并通过对比分析,探讨了PC微纳传感技术在未来应用中所面临的挑战及未来发展的趋势。

Abstract

Due to the advantages of compact size, easy integration, fast response time, strong ability for controlling light, detecting without label, and flexibility in design, the photonic crystal (PC) micronano sensors show great application prospects in the fields of industrial production, ocean exploration, biological medicine testing, and environmental detection. As for the one-dimensional nanobeam and two-dimensional slab PC sensoring technologies, the key theories and experimental technique progresses of PC micronano sensing at home and abroad are analyzed from the aspects of structural design and sensoring performance improvement of sensors. Furthermore, with comparative analysis, the challenges and future development trend of PC micronano sensing technology in further application are discussed.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/aos201838.0328003

所属栏目:“现代光信息传感”专题

基金项目:国家自然科学基金(61372038,61431003)、水下光网络联合实验室项目

收稿日期:2017-10-26

修改稿日期:2017-12-06

网络出版日期:--

作者单位    点击查看

王超:北京邮电大学信息与通信工程学院信息光子学与光通信国家重点实验室, 北京 100876
孙富君:北京邮电大学信息与通信工程学院信息光子学与光通信国家重点实验室, 北京 100876
付中原:北京邮电大学信息与通信工程学院信息光子学与光通信国家重点实验室, 北京 100876
周健:北京邮电大学信息与通信工程学院信息光子学与光通信国家重点实验室, 北京 100876
丁兆祥:北京邮电大学信息与通信工程学院信息光子学与光通信国家重点实验室, 北京 100876
田慧平:北京邮电大学信息与通信工程学院信息光子学与光通信国家重点实验室, 北京 100876

联系人作者:田慧平(hptian@bupt.edu.cn)

备注:王超(1990—),男,博士研究生,主要从事光子晶体微纳传感方面的研究。E-mail: ofcoswang@163.com

【1】John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486.

【2】Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059.

【3】Foresi J S, Villeneuve P R, Ferrera J, et al. Photonic-bandgap microcavities in optical wageguides[J]. Nature, 1997, 390(6656): 143-145.

【4】Lalanne P, Mias S, Hugonin J P. Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities[J]. Optics Express, 2004, 12(3): 458-467.

【5】Notomi M, Kuramochi E, Taniyama H. Ultrahigh-Q nanocavity with 1D photonic gap[J]. Optics Express, 2008, 16(15): 11095-11102.

【6】Zain A R, Johnson N P, Sorel M, et al. Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI)[J]. Optics Express, 2008, 16(16): 12084-12089.

【7】Deotare P B, Mccutcheon M W, Frank I W, et al. High quality factor photonic crystal nanobeam cavities[J]. Applied Physics Letters, 2009, 94(12): 121106.

【8】Quan Q, Loncar M. Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities[J]. Optics Express, 2011, 19(19): 18529-18542.

【9】Yang D, Tian H, Ji Y. High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing[J]. Applied Optics, 2015, 54(1): 1-5.

【10】Yang D, Zhang P, Tian H, et al. Ultrahigh-Q and low-mode-volume parabolic radius-modulated single photonic crystal slot nanobeam cavity for high-sensitivity refractive index sensing[J]. IEEE Photonics Journal, 2015, 7(5): 1-8.

【11】Quan Q, Burgess I B, Tang S K Y, et al. High-Q, low index-contrast polymeric photonic crystal nanobeam cavities[J]. Optics Express, 2011, 19(22): 22191-22197.

【12】Yao K, Shi Y. High-Q width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing[J]. Optics Express, 2012, 20(24): 27039-27044.

【13】Feng C, Feng G Y, Zhou G R, et al. Design of an ultracompact optical gas sensor based on a photonic crystal nanobeam cavity[J]. Laser Physics Letters, 2012, 9(12): 875.

【14】Clevenson H, Desjardins P, Gan X, et al. High sensitivity gas sensor based on high-Q suspended polymer photonic crystal nanocavity[J]. Applied Physics Letters, 2014, 104(24): 241108.

【15】Fegadolli W S, Pavarelli N, O′Brien P, et al. Thermally controllable silicon photonic crystal nanobeam cavity without surface cladding for sensing applications[J]. ACS Photonics, 2015, 2(4): 470-474.

【16】Zhang Y, Han S, Zhang S, et al. High-Q and high-sensitivity photonic crystal cavity sensor[J]. IEEE Photonics Journal, 2015, 7(5): 1-6.

【17】Zhang X, Zhou G, Shi P, et al. On-chip integrated optofluidic complex refractive index sensing using silicon photonic crystal nanobeam cavities[J]. Optics Letters, 2016, 41(6): 1197-1200.

【18】Liang F, Quan Q. Detecting single gold nanoparticles (1.8 nm) with ultrahigh-Q air-mode photonic crystal nanobeam cavities[J]. ACS Photonics, 2015, 2(12): 1692-1697.

【19】Kim S, Kim H M, Lee Y H. Single nanobeam optical sensor with a high Q-factor and high sensitivity[J]. Optics letters, 2015, 40(22): 5351-5354.

【20】Huang L, Zhou J, Sun F, et al. Optimization of one dimensional photonic crystal elliptical-hole low-index mode nanobeam cavities for on-chip sensing[J]. Journal of Lightwave Technology, 2016, 34(15): 3496-3502.

【21】Sun F, Fu Z, Wang C, et al. Ultra-compact air-mode photonic crystal nanobeam cavity integrated with bandstop filter for refractive index sensing[J]. Applied Optics, 2017, 56(15): 4363-4368.

【22】Wang B, Dündar M A, Ntzel R, et al. Photonic crystal slot nanobeam slow light waveguides for refractive index sensing[J]. Applied Physics Letters, 2010, 97(15): 151105.

【23】Xu P, Yao K, Zheng J, et al. Slotted photonic crystal nanobeam cavity with parabolic modulated width stack for refractive index sensing[J]. Optics Express, 2013, 21(22): 26908-26913.

【24】Lin T, Zhang X, Zhou G, et al. Design of an ultra-compact slotted photonic crystal nanobeam cavity for biosensing[J]. Journal of the Optical Society of America B, 2015, 32(9): 1788-1791.

【25】Yaseen M T, Yang Y C, Shih M H, et al. Optimization of high-Q coupled nanobeam cavity for label-free sensing[J]. Sensors, 2015, 15(10): 25868-25881.

【26】Li T, Gao D, Zhang D, et al. High-Q and high-sensitivity one-dimensional photonic crystal slot nanobeam cavity sensors[J]. IEEE Photonics Technology Letters, 2016, 28(6): 689-692.

【27】Zhang S, Yong Z, Shi Y, et al. Numerical analysis of an optical nanoscale particles trapping device based on a slotted nanobeam cavity[J]. Scientific Reports, 2016, 6: 35977.

【28】Yang D, Kita S, Liang F, et al. High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing[J]. Applied Physics Letters, 2014, 105(6): 063118.

【29】Zhou J, Tian H, Huang L, et al. Parabolic tapered coupled two photonic crystal nanobeam slot cavities for high-FOM biosensing[J]. IEEE Photonics Technology Letters, 2017, 29(16): 1281-1284.

【30】Chen Y, Cao H Y, Han S T, et al. Sensing property of photonic crystal Fabry-Pérot heterogeneous structure with absorption medium[J]. Acta Optica Sinica, 2017, 37(2): 0223003.
陈颖, 曹会莹, 韩帅涛, 等. 含吸收介质的光子晶体法布里-珀罗异质结构的传感特性研究[J]. 光学学报, 2017, 37(2): 0223003.

【31】Tu T, Pang F, Zhu S, et al. Excitation of Bloch surface wave on tapered fiber coated with one-dimensional photonic crystal for refractive index sensing[J]. Optics Express, 2017, 25(8): 9019-9027.

【32】Akahane Y, Asano T, Song B S, et al. High-Q photonic nanocavity in a two-dimensional photonic crystal[J]. Nature, 2003, 425(6961): 944-947.

【33】Akahane Y, Asano T, Song B S, et al. Fine-tuned high-Q photonic-crystal nanocavity[J]. Optics Express, 2005, 13(4): 1202-1214.

【34】Lai Y, Pirotta S, Urbinati G, et al. Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million[J]. Applied Physics Letters, 2014, 104(24): 096501.

【35】Tandaechanurat A, Iwamoto S, Nomura M, et al. Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness[J]. Optics Express, 2008, 16(1): 448-455.

【36】Yang D, Tian H, Ji Y. Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays[J]. Optics Express, 2011, 19(21): 20023-20034.

【37】Chakravarty S, Zou Y, Lai W C, et al. Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon[J]. Biosensors & Bioelectronics, 2012, 38(1): 170-176.

【38】Nakamura T, Takahashi Y, Tanaka Y, et al. Improvement in the quality factors for photonic crystal nanocavities via visualization of the leaky components[J]. Optics Express, 2016, 24(9): 9541-9549.

【39】Hsiao F L, Lee C. Computational study of photonic crystals nano-ring resonator for biochemical sensing[J]. IEEE Sensors Journal, 2010, 10(7): 1185-1191.

【40】Lai W C, Chakravarty S, Zou Y, et al. Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing[J]. Optics Letters, 2012, 37(7): 1208-1210.

【41】Zou Y, Chakravarty S, Kwong D N, et al. Cavity-waveguide coupling engineered high sensitivity silicon photonic crystal microcavity biosensors with high yield[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(4): 1-10.

【42】Zhou J, Tian H, Yang D, et al. Integration of high transmittance photonic crystal H2 nanocavity and broadband W1 waveguide for biosensing applications based on silicon-on-insulator substrate[J]. Optics Communications, 2014, 330(1): 175-183.

【43】Baker J E, Miller B L. Discrimination of “specific” and “nonspecific” binding in two-dimensional photonic crystals[J]. Optics Express, 2015, 23(6): 7101-7110.

【44】Baker J E, Sriram R, Miller B L. Recognition-mediated particle detection under microfluidic flow with waveguide-coupled 2D photonic crystals: towards integrated photonic virus detectors[J]. Lab ona Chip, 2017, 17(9): 1570-1577.

【45】Song B S, Noda S, Asano T, et al. Ultra-high-Q photonic double-heterostructure nanocavity[J]. Nature materials, 2005, 4(3): 207-210.

【46】Kwon S H, Sünner T, Kamp M, et al. Optimization of photonic crystal cavity for chemical sensing[J]. Optics Express, 2008, 16(16): 11709-11717.

【47】Falco A D, O′faolain L, Krauss T F. Chemical sensing in slotted photonic crystal heterostructure cavities[J]. Applied Physics Letters, 2009, 94(6): 063503.

【48】Ja'gerska' J, Zhang H, Diao Z, et al. Refractive index sensing with an air-slot photonic crystal nanocavity[J]. Optics Letters, 2010, 35(15): 2523-2525.

【49】Car C, Serna-Ota'lvaro S F, Zhang W, et al. Liquid sensor based on high-Q slot photonic crystal cavity in silicon-on-insulator configuration[J]. Optics Letters, 2014, 39(20): 5792-5794.

【50】García-Rupérez J, Toccafondo V, Bauls M J, et al. Label-free antibody detection using band edge fringes in SOI planar photonic crystal waveguides in the slow-light regime[J]. Optics Express, 2010, 18(23): 24276-24286.

【51】Lai W C, Chakravarty S, Wang X, et al. On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide[J]. Optics Letters, 2011, 36(6): 984-986.

【52】Zhang Y N, Zhao Y, Wu D, et al. Theoretical research on high sensitivity gas sensor due to slow light in slotted photonic crystal waveguide[J]. Sensors and Actuators B: Chemical, 2012, 173(12): 505-509.

【53】Zhang Y, Zhao Y, Wang Q. Multi-component gas sensing based on slotted photonic crystal waveguide with liquid infiltration[J]. Sensors and Actuators B: Chemical, 2013, 184(8): 179-188.

【54】Dholakia K, Scullion M G, Krauss T F, et al. Enhancement of optical forces using slow light in a photonic crystal waveguide[J]. Optica, 2015, 2(9): 816-821.

【55】Zhang X, Yang J, Faggiani R, et al. Interaction between atoms and slow light: a waveguide-design study[J]. Physical Review Applied, 2016, 5(2): 024003.

【56】Fan S H, Joannopoulos J D. Analysis of guided resonances in photonic crystal slabs[J]. Physical Review B, 2002, 65(23): 235112.

【57】Beheiry M E, Liu V, Fan S, et al. Sensitivity enhancement in photonic crystal slab biosensors[J]. Optics Express, 2010, 18(22): 22702-22714.

【58】Nicolaou C, Lau W T, Gad R, et al. Enhanced detection limit by dark mode perturbation in 2D photonic crystal slab refractive index sensors[J]. Optics Express, 2013, 21(25): 31698-31712.

【59】Wang S, Liu Y, Zhao D, et al. Optofluidic Fano resonance photonic crystal refractometric sensors[J]. Applied Physics Letters, 2017, 110(9): 091105.

【60】Liu Y, Wang S, Zhao D, et al. High quality factor photonic crystal filter at k≈0 and its application for refractive index sensing[J]. Optics Express, 2017, 25(9): 10536-10545.

【61】Mandal S, Erickson D. Nanoscale optofluidic sensor arrays[J]. Optics Express, 2008, 16(3): 1623-1631.

【62】Mandal S, Goddard J M, Erickson D. A multiplexed optofluidic biomolecular sensor for low mass detection[J]. Lab ona Chip, 2009, 9(20): 2924-2932.

【63】Goddard J M, Mandal S, Nugen S R, et al. Biopatterning for label-free detection[J]. Colloids & Surfaces B Biointerfaces, 2010, 76(1): 375-380.

【64】Shi Y. Ultracompact high-sensitivity biochemical sensor built with photonic crystal nanobeam cavity[C]. IEEE Nanoelectronics Conference, 2016: 16394112.

【65】Adibi A, Eftekhar A A, Momeni B, et al. High resolution on-chip spectroscopy based on miniaturized microdonut resonators[J]. Optics Express, 2011, 19(13): 12356-12364.

【66】Yang D, Wang C, Ji Y. Silicon on-chip 1D photonic crystal nanobeam bandstop filters for the parallel multiplexing of ultra-compact integrated sensor array[J]. Optics Express, 2016, 24(15): 16267-16279.

【67】Yang D, Wang B, Chen X, et al. Ultra-compact on-chip multiplexed sensor array based on dense integration of flexible 1D photonic crystal nanobeam cavity with large free spectral range and high Q-factor[J]. IEEE Photonics Journal, 2017, 9(4): 1-9.

【68】Pal S, Guillermain E, Sriram R, et al. Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing[J]. Biosensors & Bioelectronics, 2011, 26(10): 4024-4031.

【69】Yang D, Tian H, Ji Y. Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays[J]. Optics Express, 2011, 19(21): 20023-20034.

【70】Yang D, Tian H, Wu N, et al. Nanoscale torsion-free photonic crystal pressure sensor with ultra-high sensitivity based on side-coupled piston-type microcavity[J]. Sensors & Actuators A Physical, 2013, 199(17): 30-36.

【71】Liu Q, Tian H, Yang D, et al. Nanoscale radius-graded photonic crystal sensor arrays using interlaced and symmetrical resonant cavities for biosensing[J]. Sensors & Actuators A: Physical, 2014, 216(3): 223-230.

【72】Topol′ancˇik J, Bhattacharya P, Sabarinathan J, et al. Fluid detection with photonic crystal-based multichannel waveguides[J]. Applied Physics Letters, 2003, 82(8): 1143-1145.

【73】Li B. Configuration analysis of sensing element for photonic crystal based NEMS cantilever using dual nano-ring resonator[J]. Sensors & Actuators A: Physical, 2011, 169(2): 352-361.

【74】Yang D, Tian H, Ji Y. Nanoscale low crosstalk photonic crystal integrated sensor array[J]. IEEE Photonics Journal, 2014, 6(1): 1-7.

【75】Huang L, Tian H, Zhou J, et al. Design low crosstalk ring-slot array structure for label-free multiplexed sensing[J]. Sensors, 2014, 14(9): 15658.

【76】Zhou J, Huang L, Fu Z, et al. Higher Q factor and higher extinction ratio with lower detection limit photonic crystal-parallel-integrated sensor array for on-chip optical multiplexing sensing[J]. Applied Optics, 2016, 55(35): 10078-10083.

【77】Yan H, Yang C J, Tang N, et al. Specific detection of antibiotics by silicon on-chip photonic crystal biosensor arrays[J]. IEEE Sensors Journal, 2017, 7(18): 5915-5919.

【78】Yan H, Zou Y, Chakravarty S, et al. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors[J]. Applied Physics Letters, 2015, 106(12): 229-234.

【79】Zhou J, Huang L, Fu Z, et al. Multiplexed simultaneous high sensitivity sensors with high-order mode based on the integration of photonic crystal 1×3 beam splitter and three different single-slot PCNCs[J]. Sensors, 2016, 16(7): 1050.

【80】Zou Y, Chakravarty S, Zhu L, et al. The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays[J]. Applied Physics Letters, 2014, 104(14): 141103.

【81】Chen Y, Liu H, Zhang Z, et al. Planar photonic crystal based multifunctional sensors[J]. Applied Optics, 2017, 56(6): 1775-1780.

引用该论文

Wang Chao,Sun Fujun,Fu Zhongyuan,Zhou Jian,Ding Zhaoxiang,Tian Huiping. Research Progresses on Theory and Experiments of Photonic Crystal Micronano Sensing Technology[J]. Acta Optica Sinica, 2018, 38(3): 0328003

王超,孙富君,付中原,周健,丁兆祥,田慧平. 光子晶体微纳传感技术的理论与实验研究进展[J]. 光学学报, 2018, 38(3): 0328003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF