首页 > 论文 > 光学学报 > 38卷 > 3期(pp:328002--1)

基于变分图像分解的电子散斑干涉信息提取方法

Information Extraction Methods Based on Variational Image Decomposition for Electronic Speckle Pattern Interferometry

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

介绍了变分图像分解图像处理方法的基本原理、常用的函数空间及变分图像分解模型。回顾了近几年变分图像分解图像处理方法在电子散斑干涉(ESPI)信息提取技术中的应用成果, 包括应用变分图像分解图像处理方法实现ESPI条纹图的滤波处理、ESPI条纹图方向和密度的计算和ESPI条纹图骨架线的提取。介绍了这些方法相较于传统方法的优势, 并进一步展望了变分图像分解图像处理方法在光测技术中的发展趋势。

Abstract

The basic principle of image processing methods based on variational image decomposition, the common functional spaces, and the variational image decomposition models are introduced. We review the applications of information extraction technologies based on variational image decomposition for electronic speckle pattern interferometry (ESPI) in recent years, including the filtering process, orientation and density calculation, and skeleton line extraction of the fringes. The advantages of the mentioned methods compared with that of traditional methods are given and the development trend of the image processing methods based on variational image decomposition in optical measurement is further illustrated.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436.1

DOI:10.3788/aos201838.0328002

所属栏目:“现代光信息传感”专题

基金项目:国家自然科学基金(61177007,11472070,11772081)

收稿日期:2017-09-25

修改稿日期:2017-11-15

网络出版日期:--

作者单位    点击查看

唐晨:天津大学电气自动化与信息工程学院, 天津 300072
陈明明:天津大学电气自动化与信息工程学院, 天津 300072
陈霞:天津大学理学院, 天津 300072
李碧原:天津大学电气自动化与信息工程学院, 天津 300072
雷振坤:大连理工大学工业装备结构分析国家重点实验室, 辽宁 大连 116024

联系人作者:唐晨(tangchen@tju.edu.cn)

备注:唐晨(1963-), 女, 博士, 教授, 博士生导师, 主要从事现代光测技术与光信息处理、数字图像处理与模式识别等方面的研究。E-mail: tangchen@tju.edu.cn

【1】Yang L X, Xie X, Zhu L Q, et al. Review of electronic speckle pattern interferometry (ESPI) for three dimensional displacement measurement[J]. Chinese Journal of Mechanical Engineering, 2014, 27(1): 1-13.

【2】Ruiz P D, Huntley J M, Wildman R D. Depth-resolved whole-field displacement measurement by wavelength-scanning electronic speckle pattern interferometry[J]. Applied Optics, 2005, 44(19): 3945-3953.

【3】Moothanchery M, Bavigadda V, Pramanik M, et al. Application of phase shifting electronic speckle pattern interferometry in studies of photoinduced shrinkage of photopolymer layers[J]. Optics Express, 2017, 25(9): 9647-9653.

【4】Bavigadda V, Jallapuram R, Mihaylova E, et al. Electronic speckle-pattern interferometer using holographic optical elements for vibration measurements[J]. Optics Letters, 2010, 35(19): 3273-3275.

【5】Zhu X J, Tang C, Li B Y, et al. Phase retrieval from single frame projection fringe pattern with variational image decomposition[J]. Optics & Lasers in Engineering, 2014, 59(9): 25-33.

【6】Aslan M. Toward the development of high-speed microscopic ESPI system for monitoring laser heating/drilling of alumina (Al2O3) substrates[D]. Pennsylvania: Pennsylvania State University, 2000: 8-20.

【7】Tang C, Zhang F, Li B T, et al. Performance evaluation of partial differential equation models in electronic speckle pattern interferometry and the δ-mollification phase map method[J]. Applied Optics, 2006, 45(28): 7392-7400.

【8】Wang G, Li Y J, Zhou H C. Application of the radial basis function interpolation to phase extraction from a single electronic speckle pattern interferometric fringe[J]. Applied Optics, 2011, 50(19): 3110-3117.

【9】Womack K H. Interferometric phase measurement using spatial synchronous detection[C]. SPIE, 1983, 429: 8-16.

【10】Servin M, Malacara D, Rodriguez-Vera R. Phase-locked-loop interferometry applied to aspheric testing with a computer-stored compensator[J]. Applied Optics, 1994, 33(13): 2589-2595.

【11】Cuevas F J, Marroquin J L, Servin M. Fringe-follower regularized phase tracker for demodulation of closed-fringe interferograms[J]. Journal of the Optical Society of America A, 2001, 18(3): 689-695.

【12】Cuevas F J, Sossa-Azuela J H, Servin M. A parametric method applied to phase recovery from a fringe pattern based on a genetic algorithm[J]. Optics Communications, 2002, 203(3): 213-223.

【13】Cai Y X, Ming C G, Qin Y T. Skeleton extraction based on the topology and Snakes model[J]. Results in Physics, 2017, 7: 373-378.

【14】Wang H X, Kemao Q, Gao W J, et al. Fringe pattern denoising using coherence-enhancing diffusion[J]. Optics Letters, 2009, 34(8): 1141-1143.

【15】Jiang H Y, Dai M L, Su Z L, et al. An adaptive sine/cosine filtering algorithm based on speckle phase fringe orientation[J]. Acta Optica Sinica, 2017, 37(9): 0910001.
蒋汉阳, 戴美玲, 苏志龙, 等. 基于散斑相位条纹方向的自适应正弦/余弦滤波[J]. 光学学报, 2017, 37(9): 0910001.

【16】Zhu X J, Chen Z Q, Tang C. Variational image decomposition for automatic background and noise removal of fringe patterns[J]. Optics Letters, 2013, 38(3): 275-277.

【17】Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60(1/2/3/4): 259-268.

【18】Carr J C, Beatson R K, Cherrie J B, et al. Reconstruction and representation of 3D objects with radial basis functions[C]. Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, 2001: 67-76.

【19】Garcia D. Robust smoothing of gridded data in one and higher dimensions with missing values[J]. Computational Statistics & Data Analysis, 2010, 54(4): 1167-1178.

【20】Adams R A, Fournier J J F. Sobolev spaces[M]. Salt Lake City: Academic Press, 2003.

【21】Meyer Y. Oscillating patterns in image processing and nonlinear evolution equations: The fifteenth Dean Jacqueline B. Lewis memorial lectures[M]. Providence: American Mathematical Society, 2001.

【22】Maurel P, Aujol J F, Peyré G. Locally parallel texture modeling[J]. SIAM Journal on Imaging Sciences, 2011, 4(1): 413-447.

【23】Ng M K, Yuan X M, Zhang W X. Coupled variational image decomposition and restoration model for blurred cartoon-plus-texture images with missing pixels[J]. IEEE Transactions on Image Processing, 2013, 22(6): 2233-2246.

【24】Aujol J F, Chambolle A. Dual norms and image decomposition models[J]. International Journal of Computer Vision, 2005, 63(1): 85-104.

【25】Gilles J. Image decomposition: Theory, numerical schemes, and performance evaluation[J]. Advances in Imaging & Electron Physics, 2009, 158: 89-137.

【26】Labate D, Mantovani L, Negi P. Shearlet smoothness spaces[J]. Journal of Fourier Analysis and Applications, 2013, 19(3): 577-611.

【27】Vese L A, Osher S J. Modeling textures with total variation minimization and oscillating patterns in image processing[J]. Journal of Scientific Computing, 2003, 19(1): 553-572.

【28】Osher S, Solé A, Vese L. Image decomposition and restoration using total variation minimization and the H-1 norm[J]. Siam Journal on Multiscale Modeling & Simulation, 2003, 1(3): 349-370.

【29】Aujol J F, Gilboa G. Implementation and parameter selection for BV-Hilbert space regularizations[J]. Ucla Cam Report, 2004: 4-66.

【30】Shen J H. Piecewise H-1+H0+H1 images and the Mumford-Shah-Sobolev model for segmented image decomposition[J]. Applied Mathematics Research Express, 2005, 2005(4): 143-167.

【31】Li B Y, Tang C, Gao G N, et al. General filtering method for electronic speckle pattern interferometry fringe images with various densities based on variational image decomposition[J]. Applied Optics, 2017, 56(16): 4843-4853.

【32】Zhu X J, Tang C, Ren H W, et al. Image decomposition model BL-Hilbert-L2 for dynamic thermal measurements of the printed circuit board with a chip by ESPI[J]. Optics & Laser Technology, 2014, 63: 125-131.

【33】Fu S J, Zhang C M. Fringe pattern denoising via image decomposition[J]. Optics Letters, 2012, 37(3): 422-424.

【34】Chen X, Tang C, Li B Y, et al. Variational image decomposition for estimation of fringe orientation and density from electronic speckle pattern interferometry fringe patterns with greatly variable density[J]. Optics & Lasers in Engineering, 2016, 86: 197-205.

【35】Chen X, Tang C, Li B Y, et al. Gradient vector fields based on variational image decomposition for skeletonization of electronic speckle pattern interferometry fringe patterns with variable density and their applications[J]. Applied Optics, 2016, 55(25): 6893-6902.

引用该论文

Tang Chen,Chen Mingming,Chen Xia,Li Biyuan,Lei Zhenkun. Information Extraction Methods Based on Variational Image Decomposition for Electronic Speckle Pattern Interferometry[J]. Acta Optica Sinica, 2018, 38(3): 0328002

唐晨,陈明明,陈霞,李碧原,雷振坤. 基于变分图像分解的电子散斑干涉信息提取方法[J]. 光学学报, 2018, 38(3): 0328002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF