首页 > 论文 > 光学学报 > 38卷 > 3期(pp:328005--1)

用于动态应变测量的快速分布式布里渊光纤传感

Fast Distributed Brillouin Optical Fiber Sensing for Dynamic Strain Measurement

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

近些年,分布式布里渊光纤传感因具有分布式应变和温度的测量能力, 以及在结构健康监测领域的重要应用而受到广泛的研究。在多种传感方案中, 布里渊光时域分析(BOTDA)技术具有信噪比好、空间分辨率高、传感距离远等优点, 受到广泛关注。传统的BOTDA系统平均和扫频过程比较费时, 只适宜进行静态或缓慢的应变测量。通过分析BOTDA系统的分布式传感原理, 总结了限制其快速分布式传感测量的主要因素。针对这些限制因素, 综述了近期快速BOTDA系统取得的一系列的进展, 主要包括基于偏振补偿技术的快速BOTDA系统、基于光学捷变频技术的快速BOTDA系统、基于斜坡法的快速BOTDA系统、基于光学啁啾链的快速BOTDA系统、基于光学频率梳技术的快速BOTDA系统, 指出通过单一或者多个新技术组合而成的快速BOTDA系统具有更好的性能和更广阔的应用前景。

Abstract

Recently, distributed Brillouin optical fiber sensors have been extensively studied and discussed for the capacity to measure distributed strain and temperature, as well as important applications in the field of structural health monitoring. In several optical fiber sensing schemes, Brillouin optical time domain analysis (BOTDA) is widely concerned due to its good signal-to-noise ratio, high spatial resolution, and long-range sensing distance. However, due to the time-consuming averaging and frequency-sweeping processes, the classical BOTDA systems are suitable for static or slow-varying strain measurements. In this paper, we analyze the operation principle of BOTDA system and discuss some main factors for limiting fast measurement. Then, we summarize and analyze the dynamic measurement methods based on fast BOTDA, which are polarization compensation technique, frequency-agile technique, slope-assisted method, optical chirp chain technique, optical frequency comb technique. It is pointed out that the fast BOTDA system consisted of a single or multiple new techniques, has a better performance and a wider application prospect.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O437.2

DOI:10.3788/aos201838.0328005

所属栏目:“现代光信息传感”专题

基金项目:国家重大科学仪器开发专项(2017YFF010870000)、国家自然科学基金(61575052,61308004)

收稿日期:2017-10-31

修改稿日期:2018-01-02

网络出版日期:--

作者单位    点击查看

周登望:哈尔滨工业大学可调谐激光技术国家重点实验室, 黑龙江 哈尔滨 150001
王本章:哈尔滨工业大学可调谐激光技术国家重点实验室, 黑龙江 哈尔滨 150001
巴德欣:哈尔滨工业大学可调谐激光技术国家重点实验室, 黑龙江 哈尔滨 150001
徐金龙:哈尔滨工业大学土木工程学院, 黑龙江 哈尔滨 150001
徐鹏柏:哈尔滨工业大学可调谐激光技术国家重点实验室, 黑龙江 哈尔滨 150001
姜桃飞:哈尔滨工业大学可调谐激光技术国家重点实验室, 黑龙江 哈尔滨 150001
张东昱:哈尔滨工业大学土木工程学院, 黑龙江 哈尔滨 150001
李惠:哈尔滨工业大学土木工程学院, 黑龙江 哈尔滨 150001
董永康:哈尔滨工业大学可调谐激光技术国家重点实验室, 黑龙江 哈尔滨 150001

联系人作者:董永康(aldendong@163.com)

备注:周登望(1989-), 男, 博士研究生, 主要从事光纤传感和微波光子学方面的研究。E-mail: cishixitie@163.com

【1】Lee B. Review of the present status of optical fiber sensors[J]. Optical Fiber Technology, 2003, 9(2): 57-79.

【2】Kurashima T, Horiguchi T, Tateda M. Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers[J]. Optics Letters, 1990, 15(18): 1038-1040.

【3】Ba D X, Wang B Z, Zhou D W, et al. Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA[J]. Optics Express, 2016, 24(9): 9781-9793.

【4】Bao X Y, Chen L. Recent progress in brillouin scattering based fiber sensors[J]. Sensors, 2011, 11(4): 4152-4187.

【5】Hotate K. Recent achievements in BOCDA/BOCDR[C]//Proceedings of 2014 IEEE Sensors, 2014: 142-145.

【6】Boyd R W. Nonlinear optics[M]. 3rd ed. Pittsburgh: Academic Press, 2008: 429-471.

【7】Zadok A, Antman Y, Primerov N, et al. Random-access distributed fiber sensing[J]. Laser & Photonics Reviews, 2012, 6(5): L1-L5.

【8】Bao X Y, Webb D J, Jackson D A. 22-km distributed temperature sensor using Brillouin gain in an optical fiber[J]. Optics Letters, 1993, 18(7): 552-554.

【9】Dong Y K, Zhang H Y, Chen L, et al. 2cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair[J]. Applied Optics, 2012, 51(9): 1229-1235.

【10】Xu P B, Dong Y K, Zhang J W, et al. Bend-insensitive distributed sensing in singlemode-multimode-singlemode optical fiber structure by using Brillouin optical time-domain analysis[J]. Optics Express, 2015, 23(17): 22714-22722.

【11】Dong Y K, Xu P B, Zhang H Y, et al. Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis[J]. Optics Express, 2014, 22(22): 26510-26516.

【12】Dong Y K, Ba D X, Jiang T F, et al. High-spatial-resolution fast BOTDA for dynamic strain measurement based on differential double-pulse and second-order sideband of modulation[J]. IEEE Photonics Journal, 2013, 5(3): 2600407.

【13】Li W H, Bao X Y, Li Y, et al. Differential pulse-width pair BOTDA for high spatial resolution sensing[J]. Optics Express, 2008, 16(26): 21616-21625.

【14】Dong Y K, Chen L, Bao X Y. Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs[J]. Journal of Lightwave Technology, 2012, 30(8): 1161-1167.

【15】Ma Z, Zhang M J, Liu Y, et al. Incoherent Brillouin optical time-domain reflectometry with random state correlated Brillouin spectrum[J]. IEEE Photonics Journal, 2015, 7(4): 1-7.

【16】Wang F, Zhan W W, Zhang X P, et al. Improvement of spatial resolution for BOTDR by iterative subdivision method[J]. Journal of Lightwave Technology, 2013, 31(23): 3663-3667.

【17】Li B, Luo L Q, Yu Y F, et al. Dynamic strain measurement using small gain stimulated Brillouin scattering in STFT-BOTDR[J]. IEEE Sensors Journal, 2017, 17(9): 2718-2724.

【18】Yamauchi T, Hotate K. Distributed and dynamic strain measurement by BOCDA with time-division pump-probe generation scheme[C]. Conference on Lasers and Electro-Optics, 2004: CWA57.

【19】Preter E, Ba D X, London Y, et al. High-resolution Brillouin optical correlation domain analysis with no spectral scanning[J]. Optics Express, 2016, 24(24): 27253-27267.

【20】Hotate K. Fiber distributed Brillouin sensing with optical correlation domain techniques[J]. Optical Fiber Technology, 2013, 19(6): 700-719.

【21】Ong S S L, Hotate K. Dynamic strain measurement at 50 Hz using a Brillouin optical correlation domain analysis based on fiber optic sensor[C]. 5th Pacific Rim Conference on Lasers and Electro-Optics, 2003: 7993564.

【22】Hotate K, Tanaka M. Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique[J]. IEEE Photonics Technology Letters, 2002, 14(2): 179-181.

【23】Mizuno Y, Hayashi N, Fukuda H, et al. Ultrahigh-speed distributed Brillouin reflectometry[J]. Light Science & Applications, 2016, 5(12): e16184.

【24】Lee H, Hayashi N, Mizuno Y, et al. Slope-assisted Brillouin optical correlation-domain reflectometry: proof of concept[J]. IEEE Photonics Journal, 2016, 8(3): 1-7.

【25】Mizuno Y, Zou W W, He Z Y, et al. Proposal of Brillouin optical correlation-domain reflectometry (BOCDR)[J]. Optics Express, 2008, 16(16): 12148-12153.

【26】Bernini R, Minardo A, Zeni L. Distributed sensing at centimeter-scale spatial resolution by BOFDA: measurements and signal processing[J]. IEEE Photonics Journal, 2012, 4(1): 48-56.

【27】Garus D, Krebber K, Schliep F, et al. Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis[J]. Optics Letters, 1996, 21(17): 1402-1404.

【28】Minardo A, Bernini R, Ruiz-Lombera R, et al. Proposal of Brillouin optical frequency-domain reflectometry (BOFDR)[J]. Optics Express, 2016, 24(26): 29994-30001.

【29】Xu P B, Dong Y K, Zhou D W, et al. 1200 ℃ high-temperature distributed optical fiber sensing using Brillouin optical time domain analysis[J]. Applied Optics, 2016, 55(21): 5471-5478.

【30】Agrawal G P. Nonlinear fiber optics[M]. 4th ed. Amsterdam: Elsevier Academic Press, 2007.

【31】Dong Y K, Zhang H Y, Zhou D P, et al. Characterization of Brillouin gratings in optical fibers and their applications[M]. London: Intech Publisher, 2012: 115-136.

【32】Zhou D W, Dong Y K, Wang B Z, et al. Slope-assisted BOTDA based on vector SBS and frequency-agile technique for wide-strain-range dynamic measurements[J]. Optics Express, 2017, 25(3): 1889-1902.

【33】Diakaridia S, Pan Y, Xu P B, et al. Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair BOTDA based on double-peak spectrum[J]. Optics Express, 2017, 25(15): 17727-17736.

【34】Bao X Y, Wan Y D, Zou L F, et al. Effect of optical phase on a distributed Brillouin sensor at centimeter spatial resolution[J]. Optics Letters, 2005, 30(8): 827-829.

【35】Wang B Z. Dynamic distributed Brillouin optical fiber sensing based on optical frequency-agile technology[D]. Harbin: Harbin Institute of Technology, 2016.
王本章. 基于光学捷变频的动态分布式布里渊光纤传感技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

【36】López-Gil A, Domínguez-López A, Martín-López S, et al. Simple method for the elimination of polarization noise in BOTDA using balanced detection of orthogonally polarized Stokes and anti-Stokes probe sidebands[C]. 23rd International Conference on Optical Fiber Sensors, 2014, 9157: 91573U.

【37】López-Gil A, Domínguez-López A, Martín-López S, et al. Simple method for the elimination of polarization noise in BOTDA using balanced detection and orthogonal probe sidebands[J]. Journal of Lightwave Technology, 2015, 33(12): 2605-2610.

【38】Domínguez-López A, López-Gil A, Martín-López S, et al. Signal-to-noise ratio improvement in BOTDA using balanced detection[J]. Journal of Lightwave Technology, 2014, 26(4): 338-341.

【39】Urricelqui J, López-Fernandino F, Sagues M, et al. Polarization diversity for Brillouin distributed fiber sensors based on a double orthogonal pump[C]. 23rd International Conference on Optical Fiber Sensors, 2014, 9157: 91576A.

【40】Peled Y, Motil A, Tur M. Fast Brillouin optical time domain analysis for dynamic sensing[J]. Optics Express, 2012, 20(8): 8584-8591.

【41】Dong Y K, Bao X Y, Li W H. Differential Brillouin gain for improving the temperature accuracy and spatial resolution in a long-distance distributed fiber sensor[J]. Applied Optics, 2009, 48(22): 4297-4301.

【42】Ba D X, Zhou D W, Wang B Z, et al. Dynamic distributed Brillouin optical fiber sensing based on dual-modulation by combining single frequency modulation and frequency-agility modulation[J]. IEEE Photonics Journal, 2017, 9(3): 1-8.

【43】Bernini R, Minardo A, Zeni L. Dynamic strain measurement in optical fibers by stimulated Brillouin scattering[J]. Optics Letters, 2009, 34(17): 2613-2615.

【44】Peled Y, Motil A, Yaron L, et al. Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile[J]. Optics Express, 2011, 19(21): 19845-19854.

【45】Urricelqui J, Zornoza A, Sagues M, et al. Dynamic BOTDA measurements based on Brillouin phase-shift and RF demodulation[J]. Optics Express, 2012, 20(24): 26942-26949.

【46】Tu X B, Sun Q, Chen W, et al. Vector Brillouin optical time-domain analysis with heterodyne detection and IQ demodulation algorithm[J]. IEEE Photonics Journal, 2014, 6(2): 1-8.

【47】Zhou D W, Dong Y K, Wang B Z, et al. Single-shot BOTDA based on optical chirp chain probe wave for distributed ultra-fast measurement[J]. Light: Science & Applications, 2017.

【48】Chaube P, Colpitts B G, Jagannathan D, et al. Distributed fiber-optic sensor for dynamic strain measurement[J]. IEEE Sensors Journal, 2008, 8(7): 1067-1072.

【49】Voskoboinik A, Yilmaz O F, Willner A W, et al. Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA)[J]. Optics Express, 2011, 19(26): B842-B847.

【50】Voskoboinik A, Willner A E, Tur M. Extending the dynamic range of sweep-free Brillouin optical time-domain analyzer[J]. Journal of Lightwave Technology, 2015, 33(14): 2978-2985.

【51】Fang J, Xu P B, Dong Y K, et al. Single-shot distributed Brillouin optical time domain analyzer[J]. Optics Express, 2017, 25(13): 15188-15198.

引用该论文

Zhou Dengwang,Wang Benzhang,Ba Dexin,Xu Jinlong,Xu Pengbai,Jiang Taofei,Zhang Dongyu,Li Hui,Dong Yongkang. Fast Distributed Brillouin Optical Fiber Sensing for Dynamic Strain Measurement[J]. Acta Optica Sinica, 2018, 38(3): 0328005

周登望,王本章,巴德欣,徐金龙,徐鹏柏,姜桃飞,张东昱,李惠,董永康. 用于动态应变测量的快速分布式布里渊光纤传感[J]. 光学学报, 2018, 38(3): 0328005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF