首页 > 论文 > 中国激光 > 45卷 > 3期(pp:302008--1)

热变形条件对激光增材制造TC18钛合金组织及变形行为的影响

Effects of Thermal Deformation Conditions on Microstructures and Deformation Behaviors of Laser Additive Manufactured TC18 Titanium Alloys

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

通过单轴等温热压缩实验,研究了激光增材制造TC18钛合金在不同变形条件下的热变形行为,分析了其流变应力-应变规律和动态软化机制,建立了峰值应力本构方程。结果表明,激光增材制造TC18钛合金的流变应力-应变曲线表现为连续软化和稳态流变两种特征,其激活能为476.8 kJ·mol-1。当热加工温度处于α+β两相区时,软化机制为动态回复;而当热加工温度处于β单相区时,软化机制为动态再结晶。激光增材制造TC18钛合金较理想的热加工工艺参数:变形温度为830~880 ℃、应变速率为0.001~0.003 s-1和变形温度为750~760 ℃、应变速率为0.001~0.002 s-1。

Abstract

By means of the uniaxial isothermal compression test, the thermal deformation behaviors of laser additive manufactured TC18 titanium alloys are studied under different thermal deformation conditions. The regularity of flow stress-strain and softening mechanism are analyzed. The constitutive equation of peak stress is established. The results show that the flow stress-strain curves of laser additive manufactured TC18 titanium alloys can be characterized by two kinds of characteristics of the continuous softening and the steady rheology, and the activation energy is 476.8 kJ·mol-1. When the thermal working temperature is in the α+β two-phase region, the softening mechanism is mainly the dynamic recovery; when the thermal working temperature is in the β single phase region, the softening mechanism is the dynamic recrystallization. The ideal thermal process parameters for laser additive manufactured TC18 titanium alloys are the defomation temperature of 830-880 ℃ and the strain rate of 0.001-0.003 s-1, or the deformation temperature of 750-760 ℃ and the strain rate of 0.001-0.002 s-1.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG146.2

DOI:10.3788/cjl201845.0302008

所属栏目:激光制造

基金项目:国家重点研发计划(2016YFB1100401)、北京市科技计划(Z151100003715010)

收稿日期:2017-09-18

修改稿日期:2017-11-08

网络出版日期:--

作者单位    点击查看

王宏芳:北京航空航天大学大型金属构件增材制造国家工程实验室, 北京 100191北京航空航天大学材料科学与工程学院, 北京 100191
田象军:北京航空航天大学大型金属构件增材制造国家工程实验室, 北京 100191北京航空航天大学材料科学与工程学院, 北京 100191
程序:北京航空航天大学大型金属构件增材制造国家工程实验室, 北京 100191北京航空航天大学材料科学与工程学院, 北京 100191
刘栋:北京航空航天大学大型金属构件增材制造国家工程实验室, 北京 100191北京航空航天大学材料科学与工程学院, 北京 100191
王华明:北京航空航天大学大型金属构件增材制造国家工程实验室, 北京 100191北京航空航天大学材料科学与工程学院, 北京 100191

联系人作者:程序(chengxu@buaa.edu.cn)

备注:王宏芳(1989—),女,硕士研究生,主要从事激光材料加工制造方面的研究。E-mail: 244840659@qq.com

【1】Guan J, Liu J R, Lei J F, et al. The relationship of heat treatment-microstructures-mechanical properties of the TC18 titanium alloy[J]. Chinese Journal of Materials Research, 2009, 23(1): 77-82.
官杰, 刘建荣, 雷家峰, 等. TC18钛合金的组织和性能与热处理制度的关系[J]. 材料研究学报, 2009, 23(1): 77-82.

【2】Ivasishin O M, Markovsky P E, Matviychuk Y V, et al. A comparative study of the mechanical properties of high-strength β-titanium alloys[J]. Journal of Alloys and Compounds, 2008, 457(1/2): 296-309.

【3】Sha A X, Wang Q R, Li X W. Research and application of high-strength titanium alloys used in airplane structure[J]. Chinese Journal of Rare Metals, 2004, 28(1): 239-242.
沙爱学, 王庆如, 李兴无. 航空用高强度结构钛合金的研究及应用[J]. 稀有金属, 2004, 28(1): 239-242.

【4】Cao C X. Applications of titanium alloys on large transporter[J]. Rare Metals Letters, 2006, 25(1): 17-21.
曹春晓. 钛合金在大型运输机上的应用[J]. 稀有金属快报, 2006, 25(1): 17-21.

【5】Wang K, Meng M, Wang H M. Effect of heat treatment and laser multi-track overlapping on microstructure of a laser melting deposition TC18 titanium alloy[J]. Infrared and Laser Engineering, 2010, 39(3): 521-525.
王堃, 孟牧, 王华明. 热处理及激光多道搭接对激光熔化沉积TC18钛合金组织的影响[J]. 红外与激光工程, 2010, 39(3): 521-525.

【6】Qu F S, Zhou J, Liu X G, et al. Constitutive equation and processing map of thermal deformation for TC18 titanium alloy[J]. Rare Metal Materials and Engineering, 2014, 43(1): 120-124.
曲凤盛, 周杰, 刘旭光, 等. TC18钛合金热压缩本构方程及热加工图[J]. 稀有金属材料与工程, 2014, 43(1): 120-124.

【7】Li C W, Xie H, Mao X N, et al. High temperature deformation of TC18 titanium alloy[J]. Rare Metal Materials and Engineering, 2017, 46(2): 326-332.

【8】Chen T Y, Nie X A, Yi D Q, et al. High temperature deformation behavior and processing map of TC18 titanium alloy[J]. Hot Working Technology, 2012, 41(21): 24-28.
陈缇萦, 聂西安, 易丹青, 等. TC18钛合金高温变形行为与加工图[J]. 热加工工艺, 2012, 41(21): 24-28.

【9】Jones N G, Dashwood R J, Dye D, et al. Thermomechanical processing of Ti-5Al-5Mo-5V-3Cr[J]. Materials Science and Engineering A, 2008, 490(1/2): 369-377.

【10】Yang Q, Lu Z L, Huang F X, et al. Research on status and development trend of laser additive manufacturing[J]. Aeronautical Manufacturing Technology, 2016(12): 26-31.
杨强, 鲁中良, 黄福享, 等. 激光增材制造技术的研究现状及发展趋势[J]. 航空制造技术, 2016(12): 26-31.

【11】Wang H M, Zhang S Q, Wang X M. Progress and challenges of laser direct manufacturing of large titanium structural components[J]. Chinese Journal of Lasers, 2009, 36(12): 3204-3209.
王华明, 张述泉, 王向明. 大型钛合金结构件激光直接制造的进展与挑战[J]. 中国激光, 2009, 36(12): 3204-3209.

【12】Liu X X, Cheng X, Wang H M, et al. Influence of processing conditions on formation of stray grains in DD5 single-crystal superalloys by laser melting multi-traced deposition[J]. Chinese Journal of Lasers, 2017, 44(6): 0602009.
刘小欣, 程序, 王华明, 等. 不同工艺条件对激光熔化多道沉积DD5单晶高温合金杂晶的影响[J]. 中国激光, 2017, 44(6): 0602009.

【13】Liu Z W, Cheng X, Li J, et al. Heat-processing technology for laser additive manufacturing of 05Cr15Ni5Cu4Nb precipitation-hardening stainless steels[J]. Chinese Journal of Lasers, 2017, 44(6): 0602010.
刘正武, 程序, 李佳, 等. 激光增材制造05Cr15Ni5Cu4Nb沉淀硬化不锈钢的热处理工艺[J]. 中国激光, 2017, 44(6): 0602010.

【14】Liu C M, Tian X J, Tang H B, et al. Microstructural characterization of laser melting deposited Ti-5Al-5Mo-5V-1Cr-1Fe near β titanium alloy[J]. Journal of Alloys and Compounds, 2013, 572: 17-24.

【15】Donoghue J, Antonysamy A A, Martina F, et al. The effectiveness of combining rolling deformation with wire-arc additive manufacture on β-grain refinement and texture modification in Ti-6Al-4V[J]. Materials Characterization, 2016, 114: 103-114.

【16】Jackson M, Jones N G, Dye D, et al. Effect of initial microstructure on plastic flow behaviour during isothermal forging of Ti-10V-2Fe-3Al[J]. Materials Science and Engineering A, 2009, 501(1/2): 248-254.

【17】李淼泉, 李宏, 罗皎. 钛合金精密锻造[M]. 北京: 科学出版社, 2016: 43-53.

【18】Zhao J, Zhong J, Yan F, et al. Deformation behaviour and mechanisms during hot compression at supertransus temperatures in Ti-10V-2Fe-3Al[J]. Journal of Alloys and Compounds, 2017, 710: 616-627.

【19】Li X. Research on hot deformation behavior and optimization of forging process of titanium alloy TC11[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008: 29-31.
李鑫. TC11钛合金的热态变形行为及其锻造工艺优化研究[D]. 南京: 南京航空航天大学, 2008: 29-31.

【20】Sellars C M, Mctegart W J. On mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.

【21】Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10): 1883-1892.

【22】Zu L G. Hot deformation behavior and processing map of Ti-5Al-5Mo-5V-1Cr-1Fe alloy[D]. Changsha: Central South University, 2012: 38-51.
祖利国. Ti-5Al-5Mo-5V-1Cr-1Fe近β钛合金的热变形行为及加工图研究[D]. 长沙: 中南大学, 2012: 38-51.

【23】Prasad Y V R K. Author′s reply: Dynamic materials model: Basis and principles[J]. Metallurgical and Materials Transactions A, 1996, 27(1): 235-236.

【24】Prasad Y V R K, Sastry D H, Deevi S C. Processing maps for hot working of a P/M iron aluminide alloy[J]. Intermetallics, 2000, 8(9/10/11): 1067-1074.

【25】Prasad Y V R K. Recent advances in the science of mechanical processing[J]. Indian Journal of Technology, 1990, 28(6/7/8): 435-451.

【26】Hu G X, Cai X, Rong Y H. Fundamentals of materials science[M]. Shanghai: Shanghai Jiao Tong University Press, 2010: 191-216.
胡赓祥, 蔡珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2010: 191-216.

【27】Chen H Q, Cao C X. Characterization of hot deformation microstructures of alpha-beta titanium alloy with equiaxed structure[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(3): 503-509.

引用该论文

Wang Hongfang,Tian Xiangjun,Cheng Xu,Liu Dong,Wang Huaming. Effects of Thermal Deformation Conditions on Microstructures and Deformation Behaviors of Laser Additive Manufactured TC18 Titanium Alloys[J]. Chinese Journal of Lasers, 2018, 45(3): 0302008

王宏芳,田象军,程序,刘栋,王华明. 热变形条件对激光增材制造TC18钛合金组织及变形行为的影响[J]. 中国激光, 2018, 45(3): 0302008

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF