首页 > 论文 > 半导体光电 > 39卷 > 1期(pp:71-76)

H型金属孔阵列结构强透射折射率传感特性研究

Refractive Index Sensing Property of Extraordinary Transmission with H-shaped Metal Hole Array

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种H型金属孔阵列结构, 利用该结构形成的法布里-珀罗腔加强表面等离激元耦合作用, 以期获得较好的强透射现象。采用有限时域差分法(FDTD)对该结构进行数值仿真, 并详细研究了H型金属孔阵列中水平方向矩形孔和竖直方向的两相同对称矩形孔的长和宽等参数对强透射特性的影响; 同时研究了基于该现象的折射率传感特性。结果表明: 当水平方向矩形孔的长和宽分别为300和120nm、竖直方向的两相同对称矩形孔的长和宽分别为60和10nm时, 强透射现象较好, 并在此基础上获得了389RIU/nm的折射率灵敏度。这些研究结果有望为高性能微纳等离子体传感器的设计提供理论参考。

Abstract

In this paper, a H-shaped metal hole array structure was proposed, then it was used to form the Fabry-Perot cavity to enhance the surface plasmon polarizations (SPP) coupling effect, hoping to obtain a better optical transmission phenomenon. H-shaped hole array consists of a vertical rectangular hole and two horizontal symmetrical rectangular holes, thus the effects of parameters of the holes, such as the length and the width, on the transmission characteristics were studied in detail by using the finite-difference time-domain (FDTD) method. Meanwhile, the refractive index sensing property was investigated based on the phenomenon. It is found that when the length and the width of the vertical rectangle holes are 300 and 120nm, and the length of the two symmetric rectangular holes in the horizontal direction are 60 and 10nm respectively, a strong transmission phenomenon can be realized. And the sensitivity of the refractive index can reach 389RIU/nm.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TB383.2

DOI:10.16818/j.issn1001-5868.2018.01.015

所属栏目:材料、结构及工艺

基金项目:国家自然科学基金项目(6065004); 广西自然科学基金项目(2016GXNSFAA380006, 2013GXNSFAA019338, 2013GXNSFAA0199335); 桂林电子科技大学创新基金项目(2016YJCX95, YJCX201522); 广西精密导航技术与应用重点实验室基金项目(DH201703, DH201507).

收稿日期:2017-06-11

修改稿日期:--

网络出版日期:--

作者单位    点击查看

肖功利:桂林电子科技大学 1. 广西精密导航技术与应用重点实验室2. 广西信息科技实验中心
刘小刚:桂林电子科技大学 1. 广西精密导航技术与应用重点实验室
杨宏艳:桂林电子科技大学 3. 计算机与信息安全学院, 广西 桂林 541004
蒋行国:桂林电子科技大学 1. 广西精密导航技术与应用重点实验室
韦清臣:桂林电子科技大学 1. 广西精密导航技术与应用重点实验室
徐俊林:桂林电子科技大学 1. 广西精密导航技术与应用重点实验室
刘 利:桂林电子科技大学 1. 广西精密导航技术与应用重点实验室
李海鸥:桂林电子科技大学 1. 广西精密导航技术与应用重点实验室
陈永和:桂林电子科技大学 1. 广西精密导航技术与应用重点实验室
李 琦:桂林电子科技大学 1. 广西精密导航技术与应用重点实验室

联系人作者:肖功利(xgl.hy@126.com)

备注:肖功利(1975-), 男, 博士, 副教授, 硕士生导师, 主要从事微纳光电子器件与表面等离激元方面的研究。

【1】Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667-669.

【2】Gbur G, Schouten H F, Visser T D. Achieving superresolution in near-field optical data readout systems using surface plasmons[J]. Appl. Phys. Lett., 2005, 87(19): 191109.

【3】Du L P, Tang D Y, Yuan G H, et al. Emission pattern of surface-enhanced Raman scattering from single nanoparticle-film junction[J]. Appl. Phys. Lett., 2013, 102(8): 081117.

【4】Whitney A V, Elam J W, Stair P C, et al. Toward a thermally robust operando surface-enhanced Raman spectroscopy substrate[J]. American Chem. Society, 2007, 111(45): 16827-16832.

【5】Parsons J, Hendry E, Burrows C P, et al. Localized surface-plasmon resonance in periodic nondiffracting metallic nanoparticle and nanohole arrays[J]. Phys. Rev. B, 2013, 79(7): 073412.

【6】Lovera P, Jones D, Corbett B, et al. Polarization tunable transmission through plasmonic arrays of elliptical nanopores[J]. Opt. Express, 2012, 20(23): 25325-25332.

【7】Rodrigo S G, Mahboub O, Degiron A, et al. Holes with very acute angles: a new paradigm of extraordinary optical transmission through strongly localized modes[J]. Opt. Express, 2010,18(23): 23691-23697.

【8】Hao Feng, Nordlander P, Sonnefraud Y, et al. Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing[J]. ACS Nano., 2009, 3(3): 643-652.

【9】Parsons J, Hendry E, Burrows C P, et al. Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays[J]. Phys. Rev. B, 2009, 79(7): 073412.

【10】Homola J. Chem Inform abstract: surface plasmon resonance sensors for detection of chemical and biological species[J]. Chem. Rev., 2008, 108(2): 462-493.

【11】Abbas A, Linman M J, Cheng Q. Patterned resonance plasmonic microarrays for high-performance SPR imaging[J]. Anal. Chem., 2011, 83(8): 3147-3152.

【12】Sandblad P, Arnell R, Samuelsson J, et al. Approach for reliable evaluation of drug proteins interactions using surface plasma resonance technology[J]. Anal. Chem., 2009, 81(9): 3551-3559.

【13】Li S P, Zhong J G. Simultaneous amplitude-contrast and phase contrast surface plasmon resonance imaging by use of digital holography[J]. Biomedical Opt. Express, 2012, 3(12): 3190-3202.

【14】Wang Y, Qin Y, Zhang Z. Extraordinary optical transmission property of X-shaped plasmonic nanohole arrays[J]. Plasmon., 2014, 9(2): 203-207.

【15】Zhang Xiangnan, Liu Guiqiang, Liu Zhengqi, et al. Near-field plasmon effects in extraordinary optical transmission through periodic triangular hole arrays[J]. Opt. Eng., 2015, 53(10): 107108-107115.

【16】Jia Peipei, Yang Jun. Integration of large-area metallic nanohole arrays with multimode optical fibers for surface plasmon resonance sensing[J]. Appl. Phys. Lett., 2013, 102(24): 243107.

【17】Lin Y, Zou Y, Mo Y, et al. E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing[J]. Photonic Sensors, 2010, 10(10): 9397-9406.

【18】Liu Jianqiang, He Mengdong, Zhai Xiang, et al. Tailoring optical transmission via the arrangement of compound subwavelength hole arrays[J]. Opt. Express(S1094-4087), 2009, 17(3): 1859-1864.

【19】Jia Peipei, Jiang Hao, Sabarinathan J, et al. Plasmonic nanohole array sensors fabricated by template transfer with improved optical performance[J]. Nanotechnol., 2013, 24(19): 195501.

【20】Wang C , Gu J, Han J, et al. Role of mode coupling on transmission properties of subwavelength composite hole-patch structures[J]. Appl. Phys. Lett., 2010, 96(25): 251102-251102-3.

【21】Orbons S M, Roberts A. Resonance and extraordinary transmission in annular aperture arrays[J]. Opt. Express, 2006, 26(14): 12633-12638.

【22】Degrion A, Ebbesn T W. The role of localized surface plasmon mode in the enhanced of periodic subwavelength apertures[J]. J. Opt. A, 2005, 2(7): S90-S96.

【23】Najiminaini M, Vasefi F, Kaminska B, et al. Nano-hole array structure with improved surface plasmon energy matching characteristics[J]. Appl. Phys. Lett., 2012, 100(4): 043105-043105-4.

【24】Genet C, Ebbesen T W. Light in tiny holes[J]. Nature, 2007, 445(7123): 39-46.

【25】Degiron A, Ebbesen T W. The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures[J]. J. of Optics A: Pure and Appl. Opt., 2005, 7(2): S90.

引用该论文

XIAO Gongli,LIU Xiaogang,YANG Hongyan,JIANG Xingguo,WEI Qingchen,XU Junlin,LIU Li,LI Haiou,CHEN Yonghe,LI Qi. Refractive Index Sensing Property of Extraordinary Transmission with H-shaped Metal Hole Array[J]. Semiconductor Optoelectronics, 2018, 39(1): 71-76

肖功利,刘小刚,杨宏艳,蒋行国,韦清臣,徐俊林,刘 利,李海鸥,陈永和,李 琦. H型金属孔阵列结构强透射折射率传感特性研究[J]. 半导体光电, 2018, 39(1): 71-76

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF