首页 > 论文 > 中国激光 > 45卷 > 4期(pp:404002--1)

平面子孔径拼接干涉测量精度分析

Analysis on the Accuracy of Flat Sub-Aperture Stitching Interferometry

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

如何提高子孔径拼接干涉测量精度是子孔径拼接系统的关键问题。针对一维平面子孔径拼接系统,分别采用两两拼接算法和误差均化拼接算法,进行拼接位移台定位误差、参考面面形误差和随机噪声对拼接精度影响的数值仿真与分析。仿真结果表明,对于平面拼接系统,参考面高阶误差、随机噪声对拼接精度影响较小,高阶误差的影响略大于随机噪声的影响;参考面低阶误差(二阶项误差)在拼接过程中会累积放大,是平面拼接干涉测量的主要误差来源,误差均化拼接算法不能有效控制参考面低阶误差的拼接累积误差;两两拼接算法与误差均化拼接算法得到基本相同的拼接结果。对450 mm×60 mm的平面镜进行了15个子孔径的拼接测量,去除参考面低阶误差面形前后,拼接结果与大口径干涉仪的测量结果偏差从λ/3[峰谷值(PV),λ=632.8 nm]减小至λ/45(PV)。

Abstract

How to improve the sub-aperture stitching interferometry accuracy is critical for the sub-aperture stitching system. For one-dimensional flat sub-aperture stitching system, the influence of the stitching stage positioning error, the reference surface error and random noise on the stitching accuracy is simulated and analyzed of data based on both double sub-aperture stitching algorithm and error averaging stitching algorithm. The simulation results show that, the flat stitching system is insensitive to the high order errors of reference surface and the random noise. The stitching error of the high order errors of reference surface is a little larger than that of the random noise. The low order errors (the second order errors) of the reference surface will be accumulated and enlarged during the stitching process, which is the main error source for the flat stitching interferometry. The stitching accumulation error of the low order errors of the reference surface cannot be effectively controlled by the error averaging stitching algorithm. The double sub-aperture stitching algorithm and the error averaging stitching algorithm almost get the same stitching result. A flat mirror with aperture of 450 mm×60 mm is tested by 15 sub-apertures. The deviation between the stitching result and the test result of a large aperture interferometer is reduced from λ/3 [peak valley value (PV), λ=632.8 nm]to λ/45 (PV) after removing the low order errors of the reference surface.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436.1

DOI:10.3788/cjl201845.0404002

所属栏目:测量与计量

基金项目:国家科技重大专项资助项目(2011zx02402-003)

收稿日期:2017-09-07

修改稿日期:2017-10-24

网络出版日期:--

作者单位    点击查看

卢云君:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
唐锋:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
王向朝:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
郭福东:中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800

联系人作者:卢云君(luyj@siom.ac.cn)

备注:卢云君(1985-),女,硕士,工程师,主要从事光电检测及子孔径拼接测量技术方面的研究。E-mail: luyj@siom.ac.cn

【1】Kin C J, Wyant J C. Subaperture test of a large flat or a fast aspheric surface[J]. Journal of the Optical Society of America, 1981, 71: 1587.

【2】Bray M. Stitching interferometer for large optics using a standard interferometer: description of an automated system[C]. SPIE, 1997, 3047: 911-918.

【3】Murphy P, Forbes G, Fleig J, et al. Stitching interferometry: a flexible solution for surface metrology[J]. Optics and Photonics News, 2003, 14(5): 38-43.

【4】King C W. An automated metrology workstation for the measurement of large convex surfaces[C]. Optical Fabrication and Testing, 2014: OTh3B. 2.

【5】King C W, Bibby M. Development of a metrology workstation for full-aperture and sub-aperture stitching measurements[J]. Procedia CIRP, 2014, 13: 359-364.

【6】Chen M, Cheng W, Wang C. Multiaperture overlap-scanning technique for large-aperture test[C]. SPIE, 1992, 1553: 626-635.

【7】Wang Q, Chen J, Zhu R, et al. New technique for testing large optical flat[C]. SPIE, 1993, 2003: 389-397.

【8】Bai J, Cheng S Y. Object function analysis for subaperture testing and connection[J]. Optical Instruments, 1997, 19(4): 36-39.
白剑, 程上彝. 子孔径检测及拼接的目标函数分析法[J]. 光学仪器, 1997, 19(4): 36-39.

【9】Zhang R Z, Shi Q K, Cai B W, et al. Study on the experiments of the stitching interferometer[J]. Optical Technique, 2004, 30(2): 173-175.
张蓉竹, 石琪凯, 蔡邦维, 等. 子孔径拼接干涉检测实验研究[J]. 光学技术, 2004, 30(2): 173-175.

【10】Chen Y W, Wang F, Wang G W, et al. New sub-aperture stitching algorithm based on transformation[J]. Acta Optica Sinica, 2013, 33(9): 0912004.
陈一巍, 王飞, 王高文, 等. 基于变换的子孔径拼接新算法[J]. 光学学报, 2013, 33(9): 0912004.

【11】Wang X K. Testing large SiC mirror by subaperture stitching interferometry[J]. Laser & Optoelectronics Progress, 2013, 50(5): 051202.
王孝坤. 大口径碳化硅反射镜面形子孔径拼接干涉检测[J]. 激光与光电子学进展, 2013, 50(5): 051202.

【12】Zhang M, Gao S T, Miao E L, et al. Maximum likelihood estimation method to eliminate supporting error in subaperture stitching interferometry[J]. Laser & Optoelectronics Progress, 2017, 54(4): 041204.
张敏, 高松涛, 苗二龙, 等. 最大似然估计法去除子孔径拼接检测中的支撑误差[J]. 激光与光电子学进展, 2017, 54(4): 041204.

【13】Lu Y, Tang F, Wang X, et al. A high accuracy subaperture stitching system for nonflatness measurement of wafer stage mirror[C]. SPIE, 2014, 9276: 927617.

【14】Li Y, Tang F, Lu Y J, et al. A method for reducing the error accumulation in sub-aperture stitching interferometer for flat optics[J]. Chinese Journal of Lasers, 2015, 42(7): 0708006.
李永, 唐锋, 卢云君, 等. 一种降低平面子孔径拼接累积误差的方法[J]. 中国激光, 2015, 42(7): 0708006.

【15】Zhu P H, Tang F, Lu Y J, et al. Research on high accuracy sub-aperture stitching algorithm for large flat optics[J]. Chinese Journal of Lasers, 2016, 43(11): 1104002.
朱鹏辉, 唐锋, 卢云君, 等. 高精度平面子孔径拼接算法[J]. 中国激光, 2016, 43(11): 1104002.

【16】Li G P, Yu Y J, Chen M Y. Stitching technique by error averaging[J]. Optics and Precision Engineering, 2001, 9(6): 561-564.
李国培, 于瀛洁, 陈明仪. 误差均化的拼接技术[J]. 光学 精密工程, 2001, 9(6): 561-564.

【17】Cheng G, Jiang S L. Large aperture optical components of stitching technique by error averaging[J]. Opto-Electronic Engineering, 2006, 33(6): 118-120.
程刚, 蒋世磊. 大口径光学件误差均化拼接技术[J]. 光电工程, 2006, 33(6): 118-120.

【18】Bray M. Stitching interferometry and absolute surface shape metrology: similarities[J]. SPIE, 2001, 4451: 375-383.

引用该论文

Lu Yunjun,Tang Feng,Wang Xiangzhao,Guo Fudong. Analysis on the Accuracy of Flat Sub-Aperture Stitching Interferometry[J]. Chinese Journal of Lasers, 2018, 45(4): 0404002

卢云君,唐锋,王向朝,郭福东. 平面子孔径拼接干涉测量精度分析[J]. 中国激光, 2018, 45(4): 0404002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF