首页 > 论文 > 光学学报 > 38卷 > 4期(pp:0415001--1)

基于改进Harris的低动态载体速度的快速计算方法

Fast Calculation Method for Low Dynamic Carrier Velocity Based on Improved Harris

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对光照分布不均匀的室内环境下低动态载体速度计算实时性较差的问题,提出一种基于改进奇异值分解(SVD)-Harris的低动态载体速度快速计算的新方法。利用SVD对相邻两帧视觉图像分别进行压缩与重构,并结合改进的Harris角点检测算法对两帧图像进行特征点的检测;利用归一化互相关(NCC)模板匹配算法对相邻两帧视觉图像的特征点进行粗匹配;利用随机抽样一致性算法进行误匹配点对的剔除;利用特征匹配点对的信息对载体的速度进行计算。实验结果表明:传统算法的平均计算时间为3.07 s,而改进算法的平均计算时间为0.71 s,且传统算法的误匹配率远大于改进算法。与传统的NCC模板匹配方法相比,所提算法不仅保证了低动态载体速度计算的精确性,而且显著提高了载体速度在光照不均匀的室内环境下的计算效率,该研究为实现室内移动机器人实时视觉导航提供了理论依据。

Abstract

A new method for fast calculation of low dynamic carrier velocity based on improved singular value decomposition (SVD)-Harris is proposed to solve the problem that the poor real-time performance of low dynamic carrier velocity calculation under the indoor environment with uneven illumination. Firstly, we use the SVD to compress and reconstruct the two adjacent visual images and use the improved Harris corner detection algorithm to detect the feature points of the two frames. Secondly, we use the normalized cross correlation (NCC) template matching algorithm to roughly match the feature points of two adjacent visual images. Thirdly, we use random sampling consistency (RANSAC) algorithm to eliminate the false matching point pairs. Finally, we use the information of the feature matching point pairs to calculate the carrier velocity. The experimental results show that the average calculation time of the traditional algorithm is 3.07 s, while that of the improved algorithm is 0.71 s. The error matching rate of the traditional algorithm is much greater than that of the improved algorithm. Compared with the traditional NCC template matching method, the proposed algorithm not only guarantees the accuracy of the velocity calculation of the low dynamic carrier, but also greatly improves the calculation efficiency of the carrier velocity under the indoor environment with uneven illumination. This study provides a theoretical basis for realizing the real-time visual navigation of indoor mobile robot.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP249;TP242.6

DOI:10.3788/AOS201838.0415001

所属栏目:机器视觉

基金项目:国家自然科学基金(51375087)、江苏省科技成果转化专项资金(BA2016139)、国家自然科学基金(51405203)

收稿日期:2017-08-23

修改稿日期:2017-10-23

网络出版日期:--

作者单位    点击查看

方文辉:东南大学仪器科学与工程学院, 江苏 南京 210096
陈熙源:东南大学仪器科学与工程学院, 江苏 南京 210096
柳笛:东南大学仪器科学与工程学院, 江苏 南京 210096

联系人作者:陈熙源(chxiyuan@seu.edu.cn)

备注:方文辉(1994—),女,硕士研究生,主要从事视觉与惯性的组合导航技术方面的研究。E-mail: whfseu@126.com

【1】Guan X J, Wang X L. Review of vision-based navigation technique[J]. Aero Weaponry, 2014, 5: 2-8.
管叙军, 王新龙. 视觉导航技术发展综述[J]. 航空兵器, 2014, 5: 2-8.

【2】Pan G T, Li W W, Yang X H. Review of image acquisition and processing technology in visual navigation system[J]. Science & Technology Vision, 2016 (24): 97-98.
潘广堂, 李文文, 杨先海. 视觉导航系统中图像采集及处理技术综述[J]. 科技视界, 2016 (24): 97-98.

【3】Vasco V, Glover A, Bartolozzi C. Fast event-based Harris corner detection exploiting the advantages of event-driven cameras[C]. IEEE International Conference on Intelligent Robots and Systems, 2016: 16503968.

【4】Hisham M B, Yaakob S N, Raof R A A, et al. Template matching using sum of squared difference and normalized cross correlation[C]. IEEE Research and Development, 2015: 15905215.

【5】Zhang C C, Wang X H, Dong Y N, et al. Simultaneous localization and mapping based on indoor magnetic anomalies[J]. Chinese Journal of Scientific Instrument, 2015, 36(1): 181-186.
张聪聪, 王新珩, 董育宁, 等. 基于地磁场的室内定位和地图构建[J]. 仪器仪表学报, 2015, 36(1): 181-186.

【6】Li Y J. Robot Monte Carlo self-localization method based on combination of vision sensors and laser range finder[J]. Journal of Agricultural Mechanization, 2012, 43(1): 170-174.
李永坚. 融合视觉和激光测距的机器人Monte Carlo自定位方法[J]. 农业机械学报, 2012, 43(1): 170-174.

【7】Shan B H, Huo X Y, Liu Y. A stereovision measurement method using epipolar constraint to correct digital image correlation matching[J]. Chinese Journal of Lasers, 2017, 44(8): 0804003.
单宝华, 霍晓洋, 刘洋. 一种极线约束修正数字图像相关匹配的立体视觉测量方法[J]. 中国激光, 2017, 44(8): 0804003.

【8】Wang S, Xu X. 3D reconstruction based on horopter [J]. Acta Optica Sinica, 2017, 37(5): 0515004.
王珊, 徐晓. 基于双目单视面的三维重建[J]. 光学学报, 2017, 37(5): 0515004.

【9】Kumar M, Vaish A. An efficient encryption-then-compression technique for encrypted images using SVD[J]. Digital Signal Processing, 2017, 60: 81-89.

【10】Shnayderman A, Gusev A, Eskicioglu A M. An SVD-based grayscale image quality measure for local and global assessment[J]. IEEE Transactions on Image Processing, 2006, 15(2): 422-429.

【11】Harris C, Stephens M. A combined corner and edge detector[C]. Alvey Vision Conference. 1988, 15(50): 147-151.

【12】Ram P, Padmavathi S. Analysis of Harris corner detection for color images[C]. IEEE on Signal Processing, Communication, Power and Embedded System, 2016: 16980589.

【13】Zhang Q, Liu T T, Li H B, et al. Research on region matching for underwater images based on optimum searching area[J]. Acta Optica Sinica, 2014, 34(6): 0615001.
张强, 刘婷婷, 李海滨, 等. 基于最佳搜索域的水下图像区域匹配算法研究[J]. 光学学报, 2014, 34(6): 0615001.

【14】Nakhmani A, Tannenbaum A. A new distance measure based on generalized image normalized cross-correlation for robust video tracking and image recognition[J]. Pattern Recognition Letters, 2013, 34(3): 315-321.

【15】Zhang W Y, Li Z, Wang Y J. UAV scene matching algorithm based on CenSurE-star feature[J]. Chinese Journal of Scientific Instrument, 2017, 38(2): 462-470.
张闻宇, 李智, 王勇军. 基于CenSurE-star特征的无人机景象匹配算法[J]. 仪器仪表学报, 2017, 38(2): 462-470.

【16】Niedfeldt P C, Beard R W. Convergence and complexity analysis of recursive-RANSAC: A new multiple target tracking algorithm[J]. IEEE Transactions on Automatic Control, 2016, 61(2): 15752720.

【17】Lei Y Z, Li Z W, Zhong K, et al. Mismatching marked points correction method based on random sample consensus algorithm[J]. Acta Optica Sinica, 2013, 33(3): 0315002.
雷玉珍, 李中伟, 钟凯, 等. 基于随机抽样一致算法的误匹配标志点校正方法[J]. 光学学报, 2013, 33(3): 0315002.

【18】Niedfeldt P C, Beard R W. Multiple target tracking using recursive RANSAC[C]. IEEE American Control Conference, 2014: 14468332.

【19】Chum O, Werner T, Matas J. Epipolar geometry estimation via RANSAC benefits from the oriented epipolar constraint[C]. IEEE Pattern Recognition, 2004, 1: 8206267.

【20】Zhao L M, Chen N. Design of monocular visual odometry algorithm based on homography[J]. Computer Engineering and Applications, 2016, 52(17): 243-246.
赵黎明, 陈宁. 基于平面单应性的单目视觉里程计设计[J]. 计算机工程与应用, 2016, 52(17): 243-246.

引用该论文

Fang Wenhui,Chen Xiyuan,Liu Di. Fast Calculation Method for Low Dynamic Carrier Velocity Based on Improved Harris[J]. Acta Optica Sinica, 2018, 38(4): 0415001

方文辉,陈熙源,柳笛. 基于改进Harris的低动态载体速度的快速计算方法[J]. 光学学报, 2018, 38(4): 0415001

被引情况

【1】高凡一,党建武,王阳萍. 基于显著性检测的增强现实混合跟踪注册方法. 激光与光电子学进展, 2019, 56(24): 241504--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF