首页 > 论文 > 光学学报 > 38卷 > 4期(pp:0401001--1)

直视逆合成孔径激光成像雷达外场实验

Outdoor Experiment of Down-Looking Inverse Synthetic Aperture Imaging Lidar

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

进行了1.8 km和3.4 km的直视逆合成孔径激光成像雷达外场实验,给出了远距离成像模式下考虑相位延时的非线性校正算法。实验中,目标为放置在无人机上的角锥和包裹有反射纸的无人机。通过交轨向包络对齐和顺轨向相位补偿算法,先后得到了不同成像距离下的角锥目标图像和1.8 km成像距离下的无人机图像。成像距离为1.8 km时二维分辨率达到了7.2 mm×5.8 mm,成像距离为3.4 km时二维分辨率达到了12.7 mm×9.2 mm。

Abstract

Outdoor experiments of down-looking inverse synthetic aperture imaging lidar at 1.8 km and 3.4 km are processed. A nonlinear correction algorithm is given under the remote imaging mode, in which the phase delay cannot be neglected. In the experiment, the targets are pyramids put in the unmanned aerial vehicles and the unmanned aerial vehicles with retro-reflective material. The images of pyramids in different imaging distances and the unmanned aerial vehicles at 1.8 km are obtained through the range bin alignment algorithm in the orthogonal direction and phase compensation algorithm in the azimuthal direction. The two-dimensional resolutions reach 7.2 mm×5.8 mm at 1.8 km and 12.7 mm×9.2 mm at 3.4 km.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O438

DOI:10.3788/AOS201838.0401001

所属栏目:大气光学与海洋光学

基金项目:国家自然科学基金(61605226,61505233)

收稿日期:2017-09-20

修改稿日期:2017-10-29

网络出版日期:--

作者单位    点击查看

李光远:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800中国科学院大学, 北京 100049
卢智勇:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
周煜:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
孙建锋:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
许倩:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800
劳陈哲:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800中国科学院大学, 北京 100049
贺红雨:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800中国科学院大学, 北京 100049
张国:中国科学院上海光学精密机械研究所空间激光信息传输与探测技术重点实验室, 上海 201800中国科学院大学, 北京 100049

联系人作者:孙建锋(sunjianfengs@163.com)

备注:李光远(1990—),男,博士研究生,主要从事合成孔径激光成像雷达数字信号处理方面的研究。E-mail: ligy1990@163.com

【1】Lucke R L, Bashkansky M, Reintjes J, et al. Synthetic aperture ladar (SAL): Fundamental theory, design equations for a satellite system, and laboratory demonstration[R]. Washington: Naval Research Laboratory, 2002: 1-28.

【2】Beck S M, Buck J R, Buell W F, et al. Synthetic-aperture imaging laser radar: Laboratory demonstration and signal processing[J]. Applied Optics, 2005, 44(35): 7621-7629.

【3】Crouch S, Barber Z W. Laboratory demonstrations of interferometric and spotlight synthetic aperture ladar techniques[J]. Optics Express, 2012, 20(22): 24237-24246.

【4】Bashkansky M, Lucke R L, Funk E, et al. Two-dimensional synthetic aperture imaging in the optical domain[J]. Optics Letters, 2002, 27(22): 1983-1985.

【5】Zhou Y, Xu N, Luan Z, et al. 2D imaging experiment of a 2D target in a laboratory-scale synthetic aperture imaging ladar[J]. Acta Optica Sinica, 2009, 29(7): 2030-2032.
周煜, 许楠, 栾竹, 等. 尺度缩小合成孔径激光雷达的二维成像实验[J]. 光学学报, 2009, 29(7): 2030-2032.

【6】Wu J, Zhao Z L, Wu S D, et al. High resolution synthetic aperture ladar imaging at 12.9 m distance[J]. Acta Optica Sinica, 2015, 35(12): 1228002.
吴谨, 赵志龙, 吴曙东, 等. 12.9 m高分辨率合成孔径激光雷达成像[J]. 光学学报, 2015, 35(12): 1228002.

【7】Krause B, Buck J, Ryan C, et al. Synthetic aperture ladar flight demonstration[C]. Conference on Lasers and Electro-Optics, 2011: 12135067.

【8】Zhang K S, Pan J, Wang R, et al. Study of wide swath synthetic aperture ladar imaging techology[J]. Journal of Radars, 2017, 6(1): 1-10.
张珂殊, 潘洁, 王然, 等. 大幅宽激光合成孔径雷达成像技术研究[J]. 雷达学报, 2017, 6(1): 1-10.

【9】Du J B, Li D J, Ma M, et al. Vibration estimation and imaging of airborne synthetic aperture ladar based on interferometry processing[J]. Chinese Journal of Lasers, 2016, 43(9): 0910003.
杜剑波, 李道京, 马萌, 等. 基于干涉处理的机载合成孔径激光雷达振动估计和成像[J]. 中国激光, 2016, 43(9): 0910003.

【10】Prickect M J, Chen C C. Principle of inverse synthetic aperture radar /ISAR/ imaging[C]. Electronics and Aerospace Systems Conference, 1980: 340-345.

【11】Liu L R. Principle of down-looking synthetic aperture imaging ladar[J]. Acta Optica Sinica, 2012, 32(9): 0928002.
刘立人. 直视合成孔径激光成像雷达原理[J]. 光学学报, 2012, 32(9): 0928002.

【12】Liu L. Coherent and incoherent synthetic-aperture imaging ladars and laboratory-space experimental demonstrations[J]. Applied Optics, 2013, 52(4): 579-599.

【13】Luan Z, Sun J F, Zhi Y N, et al. Two-dimensional imaging experiment of down-looking synthetic aperture ladar under simulated far-field condition[J]. Acta Optica Sinica, 2014, 34(7): 0710003.
栾竹, 孙建锋, 职亚楠, 等. 直视合成孔径激光成像雷达模拟远场条件下的二维成像实验[J].光学学报, 2014, 34(7): 0710003.

【14】Luan Z, Sun J F, Zhou Y, et al. Down-looking synthetic aperture imaging ladar demonstrator and its experiments over 1.2 km outdoor[J]. Chinese Optics Letters, 2014, 12(11): 111101.

【15】Lu Z Y, Zhou Y, Sun J F, et al. Airborne down-looking synthetic aperture imaging ladar field experiment and its flight testing[J]. Chinese Journal of Lasers, 2017, 44(1): 0110001.
卢智勇, 周煜, 孙建锋, 等. 机载直视合成孔径激光成像雷达外场及飞行试验[J]. 中国激光, 2017, 44(1): 0110001.

【16】Zhang N, Lu Z Y, Sun J F, et al. Research on the signal-to-noise ratio in sliding spotlight mode down-looking synthetic aperture imaging ladar[J]. Acta Optica Sinica, 2016, 36(8): 0828001.
张宁, 卢智勇, 孙建锋, 等. 直视合成孔径激光成像雷达滑动聚束模式下图像信噪比研究[J]. 光学学报, 2016, 36(8): 0828001.

【17】Wang K, Luo L, Bao Z H. Global optimum method for motion compensation in ISAR imagery[C]. Radar 97, 1997: 5759827.

【18】Klass D J. Inverse synthetic aperture technology aids radar identification of ships[J].Aviation Week & Space Technology, 1987, 127(10): 88-92.

【19】Zhang Y H, Zhai W S, Zhang X K. Ground moving train imaging by Ku-band radar with two receiving channels[J]. Progress in Electromagnetics Research, 2012, 130(19): 493-512.

【20】Liu B, Li D J, Li L C. Moving target InISAR imaging and location based on compressed sensing[J]. Chinese Journal of Radio Science, 2014,29(1): 19-25.
刘波, 李道京, 李烈辰. 基于压缩感知的干涉逆合成孔径雷达成像研究[J]. 电波科学学报, 2014, 29(1): 19-25.

【21】Zhang L, Qiao Z J, Xing M D, et al. High-resolution ISAR imaging by exploiting sparse apertures[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 997-1008.

【22】Wang N, Wang R, Li G Z, et al. Experiment of inverse synthetic aperture ladar at 1.1 km[C]. SPIE, 2016, 10155: 101551G.

【23】Huang Y X, Song S, Xu W M, et al. Real-time inverse synthetic aperture ladar system based on continuous m-sequence phase modulation method[J]. Laser & Optoelectronics Progress, 2017, 54(7): 072801.
黄宇翔, 宋盛, 徐卫明, 等. 连续m序列相位调制的实时逆合成孔径激光雷达系统[J]. 激光与光电子学进展, 2017, 54(7): 072801.

【24】Li G Y, Sun J F, Lu Z Y, et al. Resampling technique in the orthogonal direction for down-looking synthetic aperture imaging ladar[C]. SPIE, 2015, 9617: 96170N.

【25】Chen C C, Andrews H C. Target-motion-induced radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, AES-16(1): 2-14.

【26】Wang G Y, Bao Z. A new algorithm of range alignment in ISAR motion compensation[J]. Acta Electronica Sinica, 1998, 26(6): 5-8.
王根原, 保铮. 逆合成孔径雷达运动补偿中包络对齐的新方法[J]. 电子学报, 1998, 26(6): 5-8.

【27】Wahl D E, Eichel P H, Ghiglia D C, et al. Phase gradient autofocus: A robust tool for high resolution SAR phase correction[J]. IEEE Transaction on Aerospace and Electronics Systems, 1994, 30(3): 827-835.

引用该论文

Li Guangyuan,Lu Zhiyong,Zhou Yu,Sun Jianfeng,Xu Qian,Lao Chenzhe,He Hongyu,Zhang Guo. Outdoor Experiment of Down-Looking Inverse Synthetic Aperture Imaging Lidar[J]. Acta Optica Sinica, 2018, 38(4): 0401001

李光远,卢智勇,周煜,孙建锋,许倩,劳陈哲,贺红雨,张国. 直视逆合成孔径激光成像雷达外场实验[J]. 光学学报, 2018, 38(4): 0401001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF