首页 > 论文 > 光学学报 > 38卷 > 4期(pp:412002--1)

多步相移中被测件径向相移不均匀引入误差比较及校正

Comparison and Correction of Errors Caused by Radial Phase-Shifting Nonuniformity of Test Optics in Multi-Step Phase-Shifting

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

不同步数相移算法下被测件径向相移不均匀引入的误差不同,对测量的影响也将不同。基于点衍射干涉测量光路,构建了误差分析模型,以5、6、7和13步相移算法为例,对不同相移算法下被测件径向相移不均匀引入的移相误差进行了分析,并将该移相误差的影响引入到实际干涉测量模型中,进一步分析比较了该误差对最终面形检测结果的影响,进而提出了一种基于误差预估计的多项式误差校正新方法。研究结果表明,相移算法步数越多,被测件径向相移不均匀引入的面形检测误差越大,误差均呈类抛物面分布;最终面形检测结果经Zernike多项式拟合消离焦项后已等同于进行了二次多项式校正,对于数值孔径为0.3以下的被测件,经二次多项式校正后该误差对测量的影响基本可以忽略。

Abstract

Errors causesd by radial phase-shifting nonuniformity of test optics are different when using different steps of phase-shifting algorithms to process interference fringes. Here, a error analysis model is established based on optical principle of point diffraction interferometery. Take 5, 6, 7 and 13 step phase-shifting algorithms as example, phase-shifting errors which are directly caused by radial phase-shifting nonuniformity are first analyzed, and then be introduced into the interferometry model. The influence of this phase-shifting error to final optical surface testing results are analyzed later and a new polynomial error correction method based on error preestimate is proposed. The analysis results show that the more the phase-shifting steps are, the larger the figure error caused by radial phase-shifting nonuniformity is. Each of these figure error shows a paraboloid like distribution. Also, removing the defocus item from Zernike polynomial of final optical surface testing results is equal to have had a quadratic polynomial correction of this error. If the numerical aperture of test optics are no more than 0.3, the error caused by radial phase-shifting nonuniformity can be ignored after the quadratic polynomial correction.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/aos201838.0412002

所属栏目:仪器,测量与计量

基金项目:国家自然科学基金(51275398)、陕西省科学技术研究发展计划(2014K05-4)

收稿日期:2017-10-03

修改稿日期:2017-11-08

网络出版日期:--

作者单位    点击查看

高芬:西安工业大学光电工程学院, 陕西 西安 710032西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049
倪晋平:西安工业大学光电工程学院, 陕西 西安 710032
李兵:西安交通大学机械制造系统工程国家重点实验室, 陕西 西安 710049
田爱玲:西安工业大学光电工程学院, 陕西 西安 710032

联系人作者:高芬(gaofen8128@163.com)

备注:高芬(1980-),女,博士,副教授,硕士生导师,主要从事精密光学检测技术方面的研究。E-mail: gaofen8128@163.com

【1】Ota K, Yamamoto T, Fukuda Y, et al. Advanced point diffraction interferometer for EUV aspherical mirrors[C]. SPIE, 2001, 4343: 543-550.

【2】Otaki K, Ota K, Nishiyama I, et al. Development of the point diffraction interferometer for extreme ultraviolet lithography: design, fabrication, and evaluation[J]. Journal of Vacuum Science & Technology B, 2002, 20 (6): 2449-2458.

【3】Wang D D, Yang Y Y, Chen C, et al. Point diffraction interferometer with adjustable fringe contrast for testing spherical surfaces[J]. Applied Optics, 2011, 50(16): 2342-2348.

【4】Gao F, Jiang Z D, Zhao Z X, et al. Measurement of aspheric surface combining point diffraction interferometry and annular subaperture stitching[J]. Optical Engineering, 2015, 54(1): 014102.

【5】Huang L, Gao Z S, Yang Z M, et al. Lensless imaging method for pinhole type point diffraction interferometer[J]. Acta Optica Sinica, 2017, 37(3): 0312002.
黄磊, 高志山, 杨忠明, 等. 针孔式点衍射干涉仪的无镜成像方法[J]. 光学学报, 2017, 37(3): 0312002.

【6】Otaki K, Zhu Y S, Ishii M, et al. Rigorous wavefront analysis of the visible-light point diffraction interferometer for EUVL[C]. SPIE, 2004, 5193: 182-190.

【7】Chen C, Yang Y Y, Wang D D, et al. Analysis of point-diffraction wavefront error based on finite difference time domain method[J]. Chinese Journal of Lasers, 2011, 38(9): 0908003.
陈琛, 杨甬英, 王道档, 等. 基于时域有限差分方法的点衍射波前误差分析[J]. 中国激光, 2011, 38(9): 0908003.

【8】Gao F, Jiang Z D, Li B. Analysis of diffraction wavefront error caused by alignment error of pinhole[J]. Acta Optica Sinica, 2014, 34(8): 0812004.
高芬, 蒋庄德, 李兵. 不同对准误差下的小孔衍射波面误差分析[J]. 光学学报, 2014, 34(8): 0812004.

【9】Creath K, Hariharan P. Phase-shifting errors in interferometric tests with high-numerical-aperture reference surfaces[J]. Applied Optics, 1994, 33(1): 24-25.

【10】Moore R C, Slaymaker F H. Direct measurement of phase in a spherical-wave Fizeau interferometer[J]. Applied Optics, 1980, 19(13): 2196-2200.

【11】Wang S W, Cheng L, Cheng J B, et al. Phase-shifting errors in a spherical-wave Fizeau interferometer[J]. Acta Photonica Sinica, 1996, 25(10): 883-888.
黄深旺, 陈磊, 陈进榜, 等. 斐索型球面干涉仪移相误差的探讨[J]. 光子学报, 1996, 25(10): 883-888.

【12】Schmit J, Creath K. Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry[J]. Applied Optics, 1995, 34 (19): 3610-3619.

【13】Gao F, Jiang Z D, Li B, et al. Multi-step phase-shifting algorithm based on extended averaging technique and its error suppression characteristics comparison[J]. Acta Photonica Sinica, 2014, 43(4): 0426001.
高芬, 蒋庄德, 李兵, 等. 基于扩展平均的多步相移算法及误差抑制特性比较[J]. 光子学报, 2014, 43(4): 0426001.

引用该论文

Gao Fen,Ni Jinping,Li Bing,Tian Ailing. Comparison and Correction of Errors Caused by Radial Phase-Shifting Nonuniformity of Test Optics in Multi-Step Phase-Shifting[J]. Acta Optica Sinica, 2018, 38(4): 0412002

高芬,倪晋平,李兵,田爱玲. 多步相移中被测件径向相移不均匀引入误差比较及校正[J]. 光学学报, 2018, 38(4): 0412002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF