首页 > 论文 > 红外技术 > 40卷 > 3期(pp:280-288)

基于改进 SIFT算法的弹载电视制导技术研究

Research on Missile-Borne TV Guidance Technology Based on Improved SIFT Algorithm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

以图像匹配技术为代表的弹载电视制导技术具有信息直观的特点, 作为非常优秀的图像匹配技术, SIFT算法受到了广泛的关注和深入的研究。针对传统 SIFT算法实时性差的问题, 本文提出了一种改进的 SIFT算法。在提取特征点部分, 通过 Laplace算子找出图像边缘区域并进行 Laplace加权处理, 然后利用 FAST特征点检测算法提取区域特征点; 在生成特征点描述子部分, 将传统的 128维 SIFT算子降为 48维, 利用改进的 SIFT特征描述算子为特征点赋予方向和描述符使其具有旋转不变性; 在特征点匹配部分, 利用欧式距离提取匹配点对, 并采用 RANSAC算法提纯匹配点对, 得到最优矩阵。实验结果表明改进的 SIFT算法在目标旋转、尺度变化等条件下匹配效果良好, 与传统 SIFT算法相比具有很高的实时性, 可以很好地实现图像实时匹配。

Abstract

The technology of missile-borne television guided by image matching technology has the cha-racteristics of information visualization. As an effective image matching technology, the SIFT algorithm has received extensive research attention. Aiming at resolving the problem of the poor real-time performance of the traditional SIFT algorithm, an improved SIFT algorithm is proposed. In the extraction of feature points, the Laplace operator is used to find image edge regions and Laplace weighting is performed. In the genera-tion of feature point descriptors, the traditional 128 dimensional SIFT operator is reduced to 48 dimensions, and the improved SIFT operator is adopted to assign directions and descriptors to feature points with rota-tion invariance. In the matching of feature points, the matching points are extracted by Euclide distance and are refined by the RANSAC algorithm to obtain the optimal matrix. The results of experiments show that the improved SIFT algorithm provides good matching effect under the conditions of target rotation and scale change. It performs well in real-time and can realize real-time image matching in comparison with the tradi-tional SIFT algorithm.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.4

所属栏目:制导与对抗

基金项目:“十二五”装备预研基金重点项目(9140A05030213JB91013)

收稿日期:2017-08-12

修改稿日期:2017-12-20

网络出版日期:--

作者单位    点击查看

刘桢:陆军炮兵防空兵学院高过载弹药制导控制与信息感知实验室, 安徽 合肥 230031
任梦洁:陆军炮兵防空兵学院高过载弹药制导控制与信息感知实验室, 安徽 合肥 230031陆军炮兵防空兵学院研究生管理大队, 安徽 合肥 230031
姜万里:陆军炮兵防空兵学院研究生管理大队, 安徽 合肥 230031

联系人作者:任梦洁(417078963@qq.com)

备注:任梦洁(1993-), 女, 硕士研究生, 研究领域为目标识别, FPGA。E-mail: 417078963@qq.com。

【1】赵启兵, 王养柱, 胡永浩. 基于改进 SIFT算法的无人机遥感影像匹配 [J].电光与控制, 2012(3): 36-39, 55.
ZHAO Qibing, WANG Yangzhu, HU Yonghao. Remote Sensing Image Matching for UAVs Based on Improved SIFT Algorithm[J]. Electronics Optics and Control, 2012(3): 36-39, 55.

【2】Moigne JL, Xia W, Chalermwat P, et al. First evaluation of auto matici-mage registration methods[C]//Geoscience and Remote Sensing Sympo-sium Proceedings, IEEE International, 1998: 315-317.

【3】Lowe DG. Distinctive Image Features from Scale Invariant Keypoints[J]. International Journal of Computer Vision, 2004: 91-110.

【4】刘立, 詹茵茵, 罗扬, 等. 尺度不变特征变换算子综述 [J].中国图象图形学报, 2013(8): 885-892.
LIU Li, ZHAN Yinyin, LUO Yang, et al. Summarization of the scale inva-riant feature transform[J]. Journal of image and graphics, 2013(8): 885-892.

【5】Rue H, Martino S, ChopinN. Comment on the paper: ‘Approximate Baye-sian inference for latent Gaussia models by using integrated nested Lap-lace approximations’ by Rue, H. Martino, S. and Chopin, N[J]. Journal of the Royal Statistical Society, 2009, 71(2): 319-392.

【6】Rosten, Drummond T. Machine Learning for High-Speed Corner Detec-tion[C]//European Conference on Computer Vision. Springer-Verlag, 2006: 430-443.

【7】Rosten E, Porter R, Drummond T. Faster and Better: A Machine Learning Approach to Corner Detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2010, 32(32): 105-119.

【8】Babacan SD, Molina R, Katsaggelos AK. Fast Bayesian compressive sensing using Laplace priors[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2010, 19(1):53-63.

【9】林秉雄, 罗钟铱. SIFT特征匹配标准与匹配方式的改进与应用[D].大连: 大连理工大学, 2010.
Lin Bingxiong, Luo Zhongyi. An Improvement of Matching Criteria and Method of SIFT Feature and Its Application[D]. Dalian: Dalian Univer-sity of Technology, 2010.

【10】Meltzer J, YANG MH. Sequences viakernel European Conference Gupta R. Multiple view feature descriptors from image principal componentan alysis[C]//Proceedings of the on Computer Vision, Springer Verlag, 2004: 215-227.

【11】LIU Z, AN J, JING Y. A Simple and Robust Feature Point Matching Algorithm Based on Restricted Spatial Order Constraints for Aerial Im-age Registration[J]. IEEE Transactions on Geoscience & Remote Sens-ing, 2012, 50(2): 514-527.

【12】Fischler MA. Random sample consensus: a paradigm for model fitting-with applications to image analysis and automated cartography[J]. Communications of the Acm, 1981, 24(6): 381-395.

引用该论文

LIU Zhen,REN Mengjie,JIANG Wanli. Research on Missile-Borne TV Guidance Technology Based on Improved SIFT Algorithm[J]. Infrared Technology, 2018, 40(3): 280-288

刘桢,任梦洁,姜万里. 基于改进 SIFT算法的弹载电视制导技术研究[J]. 红外技术, 2018, 40(3): 280-288

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF