首页 > 论文 > 激光与光电子学进展 > 55卷 > 4期(pp:41012--1)

基于X射线的复杂结构件内部零件装配正确性检测

Assembly Correctness Identification of Internal Part of Complex Component Based On X-Ray

吴桐   陈平  
  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

复杂结构件内部零件装配正确性检测是工业产品检测必不可少的流程之一, 但目前仍缺少一种系统稳健性较高的检测方法以完善整个检测流程。针对这个问题, 综合计算机断层扫描(CT)检测技术与卷积神经网络分类识别算法, 改变以往以连通区域为特征的检测方法, 自动识别图像中的感兴趣区域, 使合格品的判断标准由区域特征变为个体特征。将CT系统采集的投影数据序列输入卷积神经网络, 对工件内部零件进行精确定位并分类, 以产品内部零件分类结果作为零件漏装检测的判断标准, 以标准工件投影匹配检测工件投影, 通过对比完成零件位移检测。通过实验验证可得, 所提方法在模拟工件产品和实际产品检测中可完成对工件内部零件漏缺和换位的识别, 整个系统对工件内部零件的相互遮挡等因素具有一定的稳健性。

Abstract

Assembly correctness identification of internal part of complex component is one of the essential processes for industrial product testing. However, there is still lack of a detection method with high systematic robustness to improve the whole testing process. To solve this problem, based on the convolution neural network classification and computed tomography (CT) technology, we propose a detection method to identify automatically the area of interested image, which is different from the detection methods characterized by the connected area in the past. Thus, the judgment criteria of the qualified products is changed from the regional characteristics to individual characteristics. The sequence of projection data collected by CT system is input to the convolutional neural network model to precisely locate and classify the internal parts of the workpiece. The result of the internal components classification is taken as the criterion of the detection for the missing parts. The projection of standard workpiece is matched to the projection of the test-workpiece, which can detect the displacement of the parts. The experimental results show that the method can identify missing and misaligned internal parts of the workpiece in the simulation and the experiment. The overall system is robust for the situation such as overlapping among the internal parts of the workpiece.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP391.4

DOI:10.3788/LOP55.041012

所属栏目:图像处理

基金项目:国家自然科学基金(61571404, 61471325)、山西省自然科学基金(2015021099)

收稿日期:2017-09-10

修改稿日期:2017-09-26

网络出版日期:--

作者单位    点击查看

吴桐:中北大学信息与通信工程学院, 山西 太原 030051
陈平:中北大学信息与通信工程学院, 山西 太原 030051

联系人作者:吴桐(wt_825@qq.com)

备注:吴桐(1993-), 男, 硕士研究生, 主要从事深度学习、无损检测方面的研究。E-mail: wt_825@qq.com

【1】Kruger R P, Janney D H, Breedlove J R. Automated detection of cavities present in the high explosive filler of artillery shells[M]. Boston: Springer, 1979: 421-434.

【2】Cheng Y Y. Study on industrial radiation real-time imaging testing technology and development of high performance digital radiography system[D]. Nanjing: Nanjing University of Science and Technology, 2003.
程耀瑜. 工业射线实时成像检测技术研究及高性能数字成像系统研制[D]. 南京: 南京理工大学, 2003.

【3】Jiang H. Computed tomography: principles, design, artifacts, and recent advances[M]. Bellingham: SPIE Press, 2009: 39-46.

【4】Han Y P, Han Y, Wang L M, et al. Development of X-ray digital radiography automatic inspection system for testing the interior structure of complex product[J]. Binggong Xuebao Acta Armamentarii, 2012, 33(7): 881-885.
韩跃平, 韩焱, 王黎明, 等. 复杂产品内部结构装配正确性X射线自动检测系统的研究[J]. 兵工学报, 2012, 33(7): 881-885.

【5】Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.

【6】Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.

【7】Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.

【8】Girshick R, Donahue J, Darrell T, et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(1): 142-158.

【9】Girshick R. Fast R-CNN[J]. Computer Science, 2015: 1440-1448.

【10】Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 16880617.

【11】Ye G L, Sun S Y, Gao K J, et al. Nighttime pedestrian detection based on faster region convolution neural network[J]. Laser & Optoelectronics Progress, 2017, 54(8): 081003.
叶国林, 孙韶媛, 高凯珺, 等. 基于加速区域卷积神经网络的夜间行人检测研究[J]. 激光与光电子学进展, 2017, 54(8): 081003.

【12】Xu L, Zhao H T, Sun S Y. Monocular infrared image depth estimation based on deep convolutional neural networks[J]. Acta Optica Sinica, 2016, 36(7): 0715002.
许路, 赵海涛, 孙韶媛. 基于深层卷积神经网络的单目红外图像深度估计[J]. 光学学报, 2016, 36(7): 0715002.

【13】Qian M Y, Yu Y L. Tactile sensing of fiber Bragg grating based on backpropagation neural network[J]. Chinese Journal of Lasers, 2017, 44(8): 0806001.
钱牧云, 余有龙. 基于逆传播神经网络的光纤布拉格光栅触觉传感[J]. 中国激光, 2017, 44(8): 0806001.

【14】Uijlings J R R, Van De Sande K E A, Gevers T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154-171.

引用该论文

Wu Tong,Chen Ping. Assembly Correctness Identification of Internal Part of Complex Component Based On X-Ray[J]. Laser & Optoelectronics Progress, 2018, 55(4): 041012

吴桐,陈平. 基于X射线的复杂结构件内部零件装配正确性检测[J]. 激光与光电子学进展, 2018, 55(4): 041012

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF