首页 > 论文 > 中国激光 > 45卷 > 4期(pp:400001--1)

双光梳光谱技术研究进展

Research Advances in Dual-Comb Spectroscopy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于光学频率梳的双光梳光谱技术(DCS)集高分辨率、高灵敏度、宽光谱覆盖和快速测量等优势于一身; 近年来, DCS发展迅速, 新原理、新方法、新技术和新应用不断涌现, 极有必要对其发展现状进行系统梳理, 对其未来发展趋势进行客观述评。为了给相关科技人员在把握DCS发展全貌时提供参考, 从光梳出发, 以异步光学取样原理与噪声特性为主线, 对DCS的测量原理、实现方案、性能指标、应用技术、仪器化, 以及未来可能的发展趋势进行综合述评与预测。

Abstract

The dual-comb spectroscopy (DCS) based on optical frequency combs (OFCs) offers a revolutionary new spectroscopic method that can combine the advantages of high spectral resolution, high detection sensitivity, broadband spectral coverage, and fast measurement in one. In the past few years, the DCS has experienced rapid development, resulting in numerous demonstrations of new measuring principles and implementation schemes, as well as the availability of new measuring technologies and applications. Therefore, it is necessary to systematically review the current development status for the DCS and predict its future trends objectively. To provide a reference for relevant scientific and technical personnel to grasp the whole development of DCS, based on the mechanism of asynchronous optical sampling and the noise properties, we begin with the OFC and provide a comprehensive review on research advances of DCS regarding measuring principles, implementation schemes, performance indexes, application technologies, and instrumentations, and predict possible development trends in the future.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O433

DOI:10.3788/cjl201845.0400001

所属栏目:综述

基金项目:国家自然科学基金(61377044)、中国科学院战略性先导科技专项(B类)(XDB21010300)、国家重点研发计划(2017YFB0405100,2017YFB0405200)、国家973计划(2013CB934304)

收稿日期:2017-09-20

修改稿日期:2017-10-29

网络出版日期:--

作者单位    点击查看

路桥:中国科学院安徽光学精密机械研究所安徽光子器件与材料省级实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026
时雷:中国科学院安徽光学精密机械研究所安徽光子器件与材料省级实验室, 安徽 合肥 230031
毛庆和:中国科学院安徽光学精密机械研究所安徽光子器件与材料省级实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026

联系人作者:毛庆和(mqinghe@aiofm.ac.cn)

备注:路桥(1992-), 男, 博士研究生, 主要从事超短脉冲光纤激光技术与应用方面的研究。E-mail: luqiao@mail.ustc.edu.cn

【1】Udem T, Holzwarth R, Hnsch T W. Optical frequency metrology[J]. Nature, 2002, 416(6877): 233-237.

【2】Sun Q, Yang Y, Meng F, et al. High-precision measurement of terahertz frequency based on frequency comb[J]. Acta Optica Sinica, 2016, 36(4): 0412002.
孙青, 杨奕, 孟飞, 等. 基于频率梳的太赫兹频率精密测量方法研究[J]. 光学学报, 2016, 36(4): 0412002.

【3】Chou C W, Hume D B, Rosenband T, et al. Optical clocks and relativity[J]. Science, 2010, 329(5999): 1630-1633.

【4】Predehl K, Grosche G, Raupach S M F, et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place[J]. Science, 2012, 336(6080): 441-444.

【5】Holzwarth R, Udem T, Hansch T W, et al. Optical frequency synthesizer for precision spectroscopy[J]. Physical Review Letters, 2000, 85(11): 2264-2267.

【6】Krausz F, Ivanov M. Attosecond physics[J]. Reviews of Modern Physics, 2009, 81(1): 163-234.

【7】Steinmetz T, Wilken T, Araujo-Hauck C, et al. Laser frequency combs for astronomical observations[J]. Science, 2008, 321(5894): 1335-1337.

【8】Wu Y J, Ye H Q, Han J, et al. Astronomical laser frequency comb for high resolution spectrograph of 2.16 m telescope[J]. Acta Optica Sinica, 2016, 36(6): 0614001.
吴元杰, 叶慧琪, 韩建, 等. 2.16 m望远镜高分辨率光谱仪的天文光学频率梳[J]. 光学学报, 2016, 36(6): 0614001.

【9】Cundiff S T, Weiner A M. Optical arbitrary waveform generation[J]. Nature Photonics, 2010, 4(11): 760-766.

【10】Coddington I, Swann W C, Nenadovic L, et al. Rapid and precise absolute distance measurements at long range[J]. Nature Photonics, 2009, 3(6): 351-356.

【11】Diddams S A, Jones D J, Ye J, et al. Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb[J]. Physical Review Letters, 2000, 84(22): 5102-5105.

【12】Torres-Company V, Weiner A M. Optical frequency comb technology for ultra-broadband radio-frequency photonics[J]. Laser & Photonics Reviews, 2014, 8(3): 368-393.

【13】Del′Haye P, Schliesser A, Arcizet O, et al. Optical frequency comb generation from a monolithic microresonator[J]. Nature, 2007, 450(7173): 1214-1217.

【14】Hall J L. Nobel lecture: defining and measuring optical frequencies[J]. Reviews of Modern Physics, 2006, 78(4): 1279-1295.

【15】Hnsch T W. Nobel lecture: passion for precision[J]. Reviews of Modern Physics, 2006, 78(4): 1297-1309.

【16】Adler F, Maslowski P, Foltynowicz A, et al. Mid-infrared Fourier transform spectroscopy with a broadband frequency comb[J]. Optics Express, 2010, 18(21): 21861-21872.

【17】Gohle C, Stein B, Schliesser A, et al. Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra[J]. Physical Review Letters, 2007, 99(26): 263902.

【18】Diddams S A, Hollberg L, Mbele V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb[J]. Nature, 2007, 445(7128): 627-630.

【19】Coddington I, Newbury N, Swann W. Dual-comb spectroscopy[J]. Optica, 2016, 3(4): 414-426.

【20】Schiller S. Spectrometry with frequency combs[J]. Optics Letters, 2002, 27(9): 766-768.

【21】Keilmann F, Gohle C, Holzwarth R. Time-domain mid-infrared frequency-comb spectrometer[J]. Optics Letters, 2004, 29(13): 1542-1544.

【22】Ideguchi T, Poisson A, Guelachvili G, et al. Adaptive real-time dual-comb spectroscopy[J]. Nature Communications, 2014, 5: 3375.

【23】Roy J, Deschênes J D, Potvin S, et al. Continuous real-time correction and averaging for frequency comb interferometry[J]. Optics Express, 2012, 20(20): 21932-21939.

【24】Coddington I, Swann W, Newbury N. Coherent dual-comb spectroscopy at high signal-to-noise ratio[J]. Physical Review A, 2010, 82(4): 043817.

【25】Ideguchi T. Dual-comb spectroscopy[J]. Optics and Photonics News, 2017, 28(1): 32-39.

【26】Cossel K C, Waxman E M, Finneran I A, et al. Gas-phase broadband spectroscopy using active sources: progress, status, and applications[J]. Journal of the Optical Society of America B, 2017, 34(1): 104-129.

【27】Lee K, Lee J, Jang Y S, et al. Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the pulse repetition rate[J]. Scientific Reports, 2015, 5: 15726.

【28】Hsieh Y D, Iyonaga Y, Sakaguchi Y, et al. Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs[J]. Scientific Reports, 2014, 4: 3816.

【29】Cassinerio M, Gambetta A, Coluccelli N, et al. Absolute dual-comb spectroscopy at 1.55 μm by free-running Er∶fiber lasers[J]. Applied Physics Letters, 2014, 104(23): 231102.

【30】Zhao X, Hu G Q, Zhao B F, et al. Picometer-resolution dual-comb spectroscopy with a free-running fiber laser[J]. Optics Express, 2016, 24(19): 21833-21845.

【31】Yang H L, Wei H Y, Zhang H Y, et al. Performance estimation of dual-comb spectroscopy in different frequency-control schemes[J]. Applied Optics, 2016, 55(23): 6321-6330.

【32】Yang H L, Wei H Y, Chen K, et al. Simply-integrated dual-comb spectrometer via tunable repetition rates and avoiding self-referencing[J]. Optics Express, 2017, 25(7): 8063-8072.

【33】Yu Z J, Han H N, Wei Z Y. Progress in dual-comb spectroscopy[J]. Physics, 2014, 43(7): 460-467.
于子蛟, 韩海年, 魏志义. 双光梳光谱学研究进展[J]. 物理, 2014, 43(7): 460-467.

【34】Suh M G, Yang Q F, Yang K Y, et al. Microresonator soliton dual-comb spectroscopy[J]. Science, 2016, 354(6312): 600-603.

【35】Millot G, Pitois S, Yan M, et al. Frequency-agile dual-comb spectroscopy[J]. Nature Photonics, 2016, 10(1): 27-30.

【36】Coddington I, Swann W, Newbury N. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs[J]. Physical Review Letters, 2008, 100(1): 013902.

【37】Giaccari P, Deschênes J D, Saucier P, et al. Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method[J]. Optics Express, 2008, 16(6): 4347-4365.

【38】Newbury N R, Swann W C. Low-noise fiber-laser frequency combs (invited)[J]. Journal of the Optical Society of America B, 2007, 24(8): 1756-1770.

【39】Newbury N R, Washburn B R. Theory of the frequency comb output from a femtosecond fiber laser[J]. IEEE Journal of Quantum Electronics, 2005, 41(11): 1388-1402.

【40】Droste S, Ycas G, Washburn B R, et al. Optical frequency comb generation based on erbium fiber lasers[J]. Nanophotonics, 2016, 5(2): 196-213.

【41】Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 2000, 288(5466): 635-639.

【42】Wu H Y, Shi L, Ma T, et al. Design and development technique for optical frequency comb based on femtosecond fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(6): 0601008.
吴浩煜, 时雷, 马挺, 等. 基于飞秒光纤激光器的光频率梳设计与研制技术[J]. 中国激光, 2017, 44(6): 0601008.

【43】Diddams S A, Udem T, Bergquist J C, et al. An optical clock based on a single trapped 199Hg+ ion[J]. Science, 2001, 293(5531): 825-828.

【44】Swann W C, Baumann E, Giorgetta F R, et al. Microwave generation with low residual phase noise from a femtosecond fiber laser with an intracavity electro-optic modulator[J]. Optics Express, 2011, 19(24): 24387-24395.

【45】Fehrenbacher D, Sulzer P, Liehl A, et al. Free-running performance and full control of a passively phase-stable Er∶fiber frequency comb[J]. Optica, 2015, 2(10): 917-923.

【46】Baltuka A, Fuji T, Kobayashi T. Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers[J]. Physical Review Letters, 2002, 88(13): 133901.

【47】Standards Coordingating Committee 27. IEEE standard definitions of physical quantities for fundamental frequency and time metrology - Random instabilities[S]. New York: IEEE, 1999: 1139.

【48】Kim J W, Song Y J. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications[J]. Advances in Optics and Photonics, 2016, 8(3): 465-540.

【49】Pang L H, Han H N, Zhao Z B, et al. Ultra-stability Yb-doped fiber optical frequency comb with 2×1018/s stability in-loop[J]. Optics Express, 2016, 24(25): 28993-29000.

【50】Griffiths P R, Haseth J A D. Fourier transform infrared spectrometry[M]. 2nd ed. New Jersey: John Wiely & Sons, 2006: 19-36.

【51】Coddington I, Swann W C, Newbury N R. Coherent linear optical sampling at 15 bits of resolution[J]. Optics Letters, 2009, 34(14): 2153-2155.

【52】Brehm M, Schliesser A, Keilmann F. Spectroscopic near-field microscopy using frequency combs in the mid-infrared[J]. Optics Express, 2006, 14(23): 11222-11233.

【53】Coddington I, Swann W C, Newbury N R. Time-domain spectroscopy of molecular free-induction decay in the infrared[J]. Optics Letters, 2010, 35(9): 1395-1397.

【54】Ideguchi T, Poisson A, Guelachvili G, et al. Adaptive dual-comb spectroscopy in the green region[J]. Optics Letters, 2012, 37(23): 4847-4849.

【55】Deschênes J D, Giaccari P, Genest J. Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry[J]. Optics Express, 2010, 18(22): 23358-23370.

【56】Hébert N B, Genest J, Deschênes J D, et al. Self-corrected chip-based dual-comb spectrometer[J]. Optics Express, 2017, 25(7): 8168-8179.

【57】Ideguchi T, Nakamura T, Kobayashi Y, et al. Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy[J]. Optica, 2016, 3(7): 748-753.

【58】Link S M, Klenner A, Mangold M, et al. Dual-comb modelocked laser[J]. Optics Express, 2015, 23(5): 5521-5531.

【59】Rieker G B, Giorgetta F R, Swann W C, et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths[J]. Optica, 2014, 1(5): 290-298.

【60】Sinclair L C, Giorgetta F R, Swann W C, et al. Optical phase noise from atmospheric fluctuations and its impact on optical time-frequency transfer[J]. Physical Review A, 2014, 89(2): 023805.

【61】Sinclair L C, Coddington I, Swann W C, et al. Operation of an optically coherent frequency comb outside the metrology lab[J]. Optics Express, 2014, 22(6): 6996-7006.

【62】Burghoff D, Yang Y, Hu Q. Computational multiheterodyne spectroscopy[J]. Science Adances, 2016, 2(11): e1601227.

【63】Sterczewski L A, Westberg J, Patrick L, et al. Computational adaptive sampling for multiheterodyne spectroscopy[C]. Conference on Lasers and Electro-Optics, 2017: JW2A.80.

【64】Gong Z, Zhao X, Hu G Q, et al. Polarization multiplexed, dual-frequency ultrashort pulse generation by a birefringent mode-locked fiber laser[C]. Conference on Lasers and Electro-Optics, 2014: JTh2A.20.

【65】Mehravar S, Norwood R A, Peyghambarian N, et al. Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser[J]. Applied Physics Letters, 2016, 108: 231104.

【66】Hébert N B, Michaud-Belleau V, Magnan-Saucier S, et al. Dual-comb spectroscopy with a phase-modulated probe comb for sub-MHz spectral sampling[J]. Optics Letters, 2016, 41(10): 2282-2285.

【67】Yasui T, Iyonaga Y, Hsieh Y D, et al. Super-resolution discrete Fourier transform spectroscopy beyond time-window size limitation using precisely periodic pulsed radiation[J]. Optica, 2015, 2(5): 460-467.

【68】Yasui T, Ichikawa R, Hsieh Y D, et al. Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers[J]. Scientific Reports, 2015, 5: 10786.

【69】Okubo S, Hsieh Y D, Inaba H, et al. Near-infrared broadband dual-frequency-comb spectroscopy with a resolution beyond the Fourier limit determined by the observation time window[J]. Optics Express, 2015, 23(26): 33184-33193.

【70】Newbury N R, Coddington I, Swann W. Sensitivity of coherent dual-comb spectroscopy[J]. Optics Express, 2010, 18(8): 7929-7945.

【71】Foltynowicz A, Masowski P, Ban T, et al. Optical frequency comb spectroscopy[J]. Faraday Discussions, 2011, 150: 23-31.

【72】Fleisher A J, Long D A, Reed Z D, et al. Coherent cavity-enhanced dual-comb spectroscopy[J]. Optics Express, 2016, 24(10): 10424-10434.

【73】Bernhardt B, Ozawa A, Jacquet P, et al. Cavity-enhanced dual-comb spectroscopy[J]. Nature Photonics, 2009, 4(1): 55-57.

【74】Jin Y, Cristescu S M, Harren F J M, et al. Femtosecond optical parametric oscillators toward real-time dual-comb spectroscopy[J]. Applied Physics B, 2015, 119(1): 65-74.

【75】Ideguchi T, Holzner S, Bernhardt B, et al. Coherent Raman spectro-imaging with laser frequency combs[J]. Nature, 2013, 502(7471): 355-358.

【76】Carlson D R, Wu T H, Jones R J. Dual-comb intracavity high harmonic generation[C]. Frontiers in Optics, 2014: FTh1A.2.

【77】Potvin S, Genest J. Dual-comb spectroscopy using frequency-doubled combs around 775 nm[J]. Optics Express, 2013, 21(25): 30707-30715.

【78】Schliesser A, Brehm M, Keilmann F, et al. Frequency-comb infrared spectrometer for rapid, remote chemical sensing[J]. Optics Express, 2005, 13(22): 9029-9038.

【79】Zhang Z W, Gu C L, Sun J H, et al. Asynchronous midinfrared ultrafast optical parametric oscillator for dual-comb spectroscopy[J]. Optics Letters, 2012, 37(2): 187-189.

【80】Yasui T, Nose M, Ihara A, et al. Fiber-based, hybrid terahertz spectrometer using dual fiber combs[J]. Optics Letters, 2010, 35(10): 1689-1691.

【81】Yasui T, Kabetani Y, Saneyoshi E, et al. Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy[J]. Applied Physics Letters, 2006, 88(24): 241104.

【82】Bernhardt B, Sorokin E, Jacquet P, et al. Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+∶ZnSe femtosecond lasers[J]. Applied Physics B, 2010, 100(1): 3-8.

【83】Villares G, Hugi A, Blaser S, et al. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs[J]. Nature Communications, 2014, 5: 5192.

【84】Zolot A M, Giorgetta F R, Baumann E, et al. Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz[J]. Optics Letters, 2012, 37(4): 638-640.

【85】Okubo S, Iwakuni K, Inaba H, et al. Ultra-broadband dual-comb spectroscopy across 1.0-1.9 μm[J]. Applied Physics Express, 2015, 8: 082402.

【86】Glenn R, Mukamel S. Nonlinear transmission spectroscopy with dual frequency combs[J]. Physical Review A, 2014, 90(2): 023804.

【87】Hipke A, Meek S A, Ideguchi T, et al. Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs[J]. Physical Review A, 2014, 90(1): 011805.

【88】Ideguchi T, Bernhardt B, Guelachvili G, et al. Raman-induced Kerr-effect dual-comb spectroscopy[J]. Optics Letters, 2012, 37(21): 4498-4500.

【89】Portuondo-Campa E, Bennès J, Balet L, et al. Tuneable dual-comb spectrometer based on commercial femtosecond lasers and reference cell for optical frequency calibration[J]. Applied Physics B, 2016, 122: 1-9.

【90】Mohler K J, Bohn B J, Yan M, et al. Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency[J]. Optics Letters, 2017, 42(2): 318-321.

【91】Boudreau S, Levasseur S, Perilla C, et al. Chemical detection with hyperspectral lidar using dual frequency combs[J]. Optics Express, 2013, 21(6): 7411-7418.

【92】Asahara A, Nishiyama A, Yoshida S, et al. Dual-comb spectroscopy for rapid characterization of complex optical properties of solids[J]. Optics Letters, 2016, 41(21): 4971-4974.

【93】Thorpe M J, Moll K D, Jones R J, et al. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection[J]. Science, 2006, 311(5767): 1595-1599.

【94】Thorpe M J, Balslev-Clausen D, Kirchner M S, et al. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis[J]. Optics Express, 2008, 16(4): 2387-2397.

【95】Crosson E R, Ricci K N, Richman B A, et al. Stable isotope ratios using cavity ring-down spectroscopy: determination of 13C/12C for carbon dioxide in human breath[J]. Analytical Chemistry, 2002, 74(9): 2003-2007.

【96】Galli I, Bartalini S, Borri S, et al. Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection[J]. Physical Review Letters, 2011, 107(27): 270802.

【97】Picque N. Fourier transform spectroscopy with laser frequency combs[C]. Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment, 2015: FT2A.1.

【98】Sinclair L C, Deschenes J D, Sonderhouse L, et al. Invited article: a compact optically coherent fiber frequency comb[J]. Review of Scientific Instruments, 2015, 86(8): 081301.

【99】Chen Z J, Yan M, Hnsch T W, et al. A phase-stable dual-comb interferometer[J/OL]. arXiv, 2017: 1705.04214 (2017-05-11). https://arxiv.org/ftp/arxiv/papers/1705/1705.04214.pdf.

【100】Truong G W, Waxman E M, Cossel K C, et al. Accurate frequency referencing for fieldable dual-comb spectroscopy[J]. Optics Express, 2016, 24(26): 30495-30504.

【101】Feng Y, Xu X, Hu X H, et al. Environmental-adaptability analysis of an all polarization-maintaining fiber-based optical frequency comb[J]. Optics Express, 2015, 23(13): 17549-17559.

【102】Baumann E, Giorgetta F R, Nicholson J W, et al. High-performance, vibration-immune, fiber-laser frequency comb[J]. Optics Letters, 2009, 34(5): 638-640.

【103】Lee J, Lee K, Jang Y S, et al. Testing of a femtosecond pulse laser in outer space[J]. Scientific Reports, 2014, 4: 5134.

【104】Jang Y S, Lee J, Kim S, et al. Space radiation test of saturable absorber for femtosecond laser[J]. Optics Letters, 2014, 39(10): 2831-2834.

【105】Lezius M, Wilken T, Deutsch C, et al. Space-borne frequency comb metrology[J]. Optica, 2016, 3(12): 1381-1387.

【106】Wilken T, Lezius M, Hnsch T W, et al. A frequency comb and precision spectroscopy experiment in space[C]. Conference on Lasers and Electro-Optics, 2013: AF2H.5.

【107】Tadanaga O, Okubo A, Inaba H, et al. Wideband optical frequency comb light source for use in e.g. dual comb spectroscopy application, has nonlinear optical medium emitting light of first and second wavelength among lights in input of optical frequency comb: JP2016212261A[P]. 2016-12-15.

【108】Zheng Z, Zhao X, Liu L, et al. Method and system for measuring optical asynchronous sampled signal: WO2013127370[P]. 2013-09-06.

【109】Kieu K Q. Dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser: WO2016196677A1[P]. 2016-12-08.

【110】Kippenberg T, Del′Haye P, Schliesser A. Method and apparatus for optical frequency comb generation using a monolithic micro-resonator: US7982944[P]. 2011-07-19.

【111】Kieu K Q. Method for interrogating absorbing sample using dual-comb spectroscopy system, involves using mode-locked laser to be mode-locked, and detecting interference pattern produced by interference between pulses after traversing sample: WO2016196677A1[P]. 2016-12-08.

【112】Fermann M E, Marangoni M, Gatti D. Laser system for line narrowing of frequency shifted continuous wave (CW) lasers has frequency shifter, generating line narrowed and CW laser output, which is driven by signal derived from beat signal in feedforward configuration: WO2013148757A1, US2015185141A1, US9097656B2[P]. 2013-11-03.

【113】Chandler D W, Strecker K E. Dual-etalon cavity-ring-down frequency-comb spectrometer system defines spectrums of light which includes multiple optical frequencies, by frequency-comb signals, respectively: WO2012003046A2, WO2012003046A3, US2012002212A1, US8693004B2[P]. 2012-01-05.

【114】Fermann M E, Hartl I. Coherent dual scanning laser system for e.g. optical imaging of test sample, has optical reference comprising optical element that generates reference signal for measurement of time delay between pulses of pulse pair as function of time: US2014219298A1, US9252560B2[P]. 2014-08-07.

【115】Fermann M E, Hartl I. Coherent dual scanning laser system for optical imaging system used in e.g. microscopy, has optical element that generates frequency converted spectral output having frequency comb comprising harmonics of oscillator repetition rates: WO2010101690A1, US2010225897A1, US8120778B2, CN102349205A, CN102349205B, JP2012519879W, JP5663499B2, DE112010000981T5[P]. 2010-09-09.

【116】Newbury N R, Coddington I, Swann W C. Method for performing comb-based spectroscopy of hydrogen cyanide gas sample in workhorse system for e.g. research application, involves real time summing digitized sample to generate averaged signal pulse: US2011069309A1, US8564785B2[P]. 2011-03-24.

【117】Coddington I, Newbury N R, Swann W C. Comb-based spectroscopy method for measuring continuous wave source at time-bandwidth limited resolution, involves Fourier transforming product of digitized samples to yield wideband spectrum of source at resolution by comb repetition rate: US2013342836A1, US9557219B2[P]. 2013-12-26.

引用该论文

Lu Qiao,Shi Lei,Mao Qinghe. Research Advances in Dual-Comb Spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(4): 0400001

路桥,时雷,毛庆和. 双光梳光谱技术研究进展[J]. 中国激光, 2018, 45(4): 0400001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF