首页 > 论文 > 光学学报 > 38卷 > 4期(pp:401005--1)

侧向散射激光雷达探测白天近地面气溶胶探测技术

Ground Layer Aerosol Detection Technology During Daytime Based on Side-Scattering Lidar

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于CCD的侧向散射激光雷达不受几何因子的影响, 是探测近地面气溶胶的有力工具。夜晚的探测技术已成熟, 由于背景光中夜晚的月光和星光远弱于白天的太阳光, 故利用夜晚探测技术得到的白天气溶胶信噪比很低。实验中选用窄带滤光片和小张角镜头, 通过校正窄带滤光片透射率、缩短单次曝光时间、多次曝光平均等技术可有效提高白天探测气溶胶的信噪比。白天个例表明, 侧向散射激光雷达与后向散射激光雷达反演的气溶胶后向散射系数廓线在0.75~1.50 km范围内的变化趋势一致, 并对0.75 km以下侧向散射激光雷达探测的正确性进行了验证。对合肥地区近地面气溶胶后向散射系数进行了37 h的连续昼夜探测, 并与同一地点的温度、PM2.5质量浓度联合进行分析。研究表明, 改进后的白天侧向散射激光雷达技术是正确、可行的。

Abstract

Side-scattering lidar based on CCD, which is not affected by geometrical factors, is a powerful tool for ground layer aerosol detection. The detection technology at night is mature. Since moonlight and starlight in the background light are much weaker than the sunlight, the signal-to-noise ratio is very low when we detect ground layer aerosol during daytime using the detection technology used at night. In experiments, lens with a small field of view and a narrowband filter is selected. Meanwhile, correcting narrowband filter transmittance, reducing single exposure time, and multi-average-exposure are applied to improve signal-to-noise ratio effectively. The daytime case shows that the aerosol backscattering coefficient profile from side-scattering lidar is consistent with that from backscattering lidar in the range from 0.75 km to 1.5 km. The correctness of side-scattering lidar detection under 0.75 km is also verified. Continuous 37 h profiles of aerosol backscattering coefficient of Hefei near ground region are calculated, and the analysis combined with temperature and PM2.5 mass concentration is conduct. The results indicate that the improved side-scattering lidar detection technology is correct and feasible.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN958.2;P407.5

DOI:10.3788/aos201838.0401005

所属栏目:大气与海洋光学

基金项目:国家自然科学基金(41475025)

收稿日期:2017-09-22

修改稿日期:2017-11-05

网络出版日期:--

作者单位    点击查看

麻晓敏:中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026陆军炮兵防空兵学院基础部, 安徽 合肥 230031
陶宗明:中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031陆军炮兵防空兵学院基础部, 安徽 合肥 230031
张璐璐:安徽粮食工程职业学院信息技术系, 安徽 合肥 230011
单会会:陆军炮兵防空兵学院基础部, 安徽 合肥 230031
张辉:陆军炮兵防空兵学院基础部, 安徽 合肥 230031
马明俊:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
王申浩:陆军炮兵防空兵学院基础部, 安徽 合肥 230031
王英俭:中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031中国科学技术大学, 安徽 合肥 230026

联系人作者:陶宗明(zmtao@aiofm.ac.cn)

备注:麻晓敏(1980-), 女, 博士, 副教授, 主要从事激光雷达技术、激光大气探测方面的研究。E-mail: maxiaomin308515@163.com

【1】Shi G Y, Wang B, Zhang H, et al. The radiative and climatic effects of atmospheric aerosols[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(4): 826-840.
石广玉, 王标, 张华, 等. 大气气溶胶的辐射与气候效应[J]. 大气科学, 2008, 32(4): 826-840.

【2】Zhang R J, Ho K F, Shen Z X. The role of aerosol in climate change, the environment, and human health[J]. Atmospheric and Oceanic Science Letters, 2012, 5(2): 156-161.

【3】Hu S X, Wang X B, Wu Y H, et al. Geometrical form factor determination with Raman backscattering signals[J]. Optics Letters, 2005, 30(14): 1879-1881.

【4】Su J, McCormick M P, Liu Z Y, et al. Obtaining a ground-based lidar geometric form factor using coincident spaceborne lidar measurements[J]. Applied Optics, 2010, 49(1): 108-113.

【5】Mao F Y, Gong W, Li J. Geometrical form factor calculation using Monte Carlo integration for lidar[J]. Optics & Laser Technology, 2012, 44(4): 907-912.

【6】Chen R Q, Jiang Y S, Wang H Y. Calculation method of the overlap factor and its enhancement for airborne lidar[J]. Optics Communications, 2014, 331: 181-188.

【7】Wang H X, Liu J G, Zhang T S. Calculation method of geometrical form factor and its enhancement for off-axis lidar system[J]. Acta Photonica Sinica, 2015, 44(6): 0601001.
王欢雪, 刘建国, 张天舒. 基于Monte Carlo积分法的离轴激光雷达几何因子的计算及系统优化[J]. 光子学报, 2015, 44(6): 0601001.

【8】Tao Z M, Liu D, Ma X M, et al. Development and case study of side-scatter lidar system based on charge-coupled device[J]. Infrared and Laser Engineering, 2014, 43(10): 3282-3286.
陶宗明, 刘东, 麻晓敏, 等. 基于CCD 的侧向激光雷达系统研制及探测个例[J]. 红外与激光工程, 2014, 43(10): 3282-3286.

【9】Meki K, Yamaguchi K, Li X, et al. Range-resolved bistatic imaging lidar for the measurement of the lower atmosphere[J]. Optics Letters, 1996, 21(17): 1318-1320.

【10】Bernes J E, Parikh Sharma N C, Kaplan T B. Atmospheric aerosol profiling with a bistatic imaging lidar system[J]. Applied Optics, 2007, 46(15): 2922-2929.

【11】Bernes J E, Bronner S, Beck R, et al. Boundary layer scattering measurements with a charge-coupled device camera lidar[J]. Applied Optics, 2003, 42(15): 2647-2652.

【12】Mei L, Brydegaard M. Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system[J]. Optics Express, 2015, 23(24): 1613-1628.

【13】Ma X M, Zhang H, Shan H H, et al. Statistical distribution of aerosol backscattering coefficient profiles in near-ground at west suburb of Hefei in 2014[J]. Chinese Journal of Lasers, 2016, 43(7): 0705001.
麻晓敏, 张辉, 单会会, 等. 合肥西郊2014年近地面气溶胶后向散射系数廓线统计分布[J]. 中国激光, 2016, 43(7): 0705001.

【14】Shi B, Tao Z M, Ma X M, et al. Measurements of near-ground aerosol backscattering coefficient profile with side-scatter technique[J]. Acta Optica Sinica, 2015, 35(5): 0501006.
史博, 陶宗明, 麻晓敏, 等. 基于侧向散射技术的近地面气溶胶后向散射系数廓线探测[J]. 光学学报, 2015, 35(5): 0501006.

【15】Ma X M, Shi B, Shan H H, et al. Geometric calibration method of side-scatter lidar based on charge-coupled device[J]. Acta Photonica Sinica, 2015, 44(2): 0201002.
麻晓敏, 史博, 单会会, 等. 基于CCD 成像的侧向散射激光雷达几何标定方法研究[J]. 光子学报, 2015, 44(2): 0201002.

【16】Fernald F G. Analysis of atmospheric lidar observations: Some comments[J]. Applied Optics, 1984, 23(5): 652-653.

【17】Tao Z M, Liu D, Wang Z Z, et al. Measurements of aerosol phase function and vertical backscattering coefficient using a charge-coupled device side-scatter lidar[J]. Optics Express, 2014, 22(1): 1127-1134.

【18】Tao Z M, Liu Dong, Xie C B, et al. A numerical inversion method for CCD side-scatter lidar[C]. International Conference on Remote Sensing, Environment and Transportation Engineering, 2013: 350-352.

【19】Zhao K H, Zhong X H. Optics (Vol.1)[M]. Beijing: Peking University Press, 2016: 335-340.
赵凯华, 钟锡华. 光学(上册)[M]. 北京: 北京大学出版社, 2016: 335-340.

【20】Xie C B. Development of the mobile Raman-Mie scattering lidar[D]. Hefei: Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 2005: 39-40.
谢晨波. 车载式Raman-Mie散射激光雷达的研制[D]. 合肥: 中国科学院安徽光学精密机械研究所, 2005: 39-40.

【21】Tao Z M, Zhang Q Z, Fang X, et al. Estimation of random errors for backscatter lidar observations[J]. Acta Photonica Sinica, 2009, 38(12): 3279-3282.
陶宗明, 张清泽, 方欣, 等. 激光雷达信号随机误差的估算[J]. 光子学报, 2009, 38(12): 3279-3282.

【22】Ma X M, Tao Z M, Ma M J, et al. Retrival method of side-scatter lidar signal based on charge coupled device technique[J]. Acta Optica Sinica, 2014, 34(2): 0201001.
麻晓敏, 陶宗明, 马明俊, 等. 基于CCD 的侧向散射激光雷达信号提取方法[J]. 光学学报, 2014, 34(2): 0201001.

引用该论文

Ma Xiaomin,Tao Zongming,Zhang Lulu,Shan Huihui,Zhang Hui,Ma Mingjun,Wang Shenhao,Wang Yingjian. Ground Layer Aerosol Detection Technology During Daytime Based on Side-Scattering Lidar[J]. Acta Optica Sinica, 2018, 38(4): 0401005

麻晓敏,陶宗明,张璐璐,单会会,张辉,马明俊,王申浩,王英俭. 侧向散射激光雷达探测白天近地面气溶胶探测技术[J]. 光学学报, 2018, 38(4): 0401005

被引情况

【1】项衍,刘建国,张天舒,吕立慧,付毅宾. 激光雷达探测气溶胶光学特性的不确定性因素研究. 激光与光电子学进展, 2018, 55(9): 92801--1

【2】刘燕平,王冲,夏海云. 时频分析在激光雷达中的应用进展. 激光与光电子学进展, 2018, 55(12): 120005--1

【3】王岱良,李玉. 基于旋转差值核估计的激光雷达点云建筑物边缘提取. 中国激光, 2019, 46(1): 104005--1

【4】谭伟,曹世翔,齐文雯,何红艳. 一种高分辨率遥感图像去雾霾方法. 光学学报, 2019, 39(3): 301005--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF