首页 > 论文 > 光电子技术 > 38卷 > 1期(pp:27-31)

采用300 nm周期孔阵图形提高P3HT:PCBM有机太阳能电池效率研究

Study on Improving Efficiency of P3HT:PCBM Organic Solar Cells with 300 nm Periodic Hole Patterns

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

微结构表面设计是提高太阳能电池光电转换效率的主要方法之一。微结构可以增加入射光的吸收率, 减小反射率, 达到提高太阳能电池光电转换效率的目的。本文采用全息光刻和湿法刻蚀技术在ITO玻璃片上制备周期为300 nm的孔阵图形, 以P3HT和PCBM作为电池活性层的给体材料和受体材料。实验结果表明微结构可以提高ITO/PEDOT:PSS/P3HT:PCBM/Al有机太阳能电池光电转换效率。当孔阵图形刻蚀深度达到60 nm时, 光电转换效率提高了约8 %。实验证实, 孔阵图形的采用增加了入射光的吸收, 提高了太阳能电池光电转换效率。

Abstract

The surface microstructure is one of the approaches to improve the photoelectric conversion efficiency of solar cells. The surface microstructure can increase the absorptivity and reduce the reflectivity of incident light, so as to improve the photoelectric conversion efficiency of solar cells. In this paper, the holographic lithography and wet etching techniques were adopted to prepare 300 nm periodic hole array patterns on the ITO glass for the solar cell with P3HT and PCBM as the donor and receptor materials of active layer, respectively. The experimental results show that the surface microstructure could improve the photoelectric conversion efficiency of ITO/PEDOT:PSS/P3HT:PCBM/Al organic solar cells. With the optimum hole array etching depth of 60 nm, the photoelectric conversion efficiency of organic solar cell can be improved by around 8%. It is indicated that the use of hole array patterns could actually increase the absorption of incident light and improve the photoelectric conversion efficiency of solar cells.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TM914.4

DOI:10.19453/j.cnki.1005-488x.2018.01.005

所属栏目:研究与试制

基金项目:国家自然科学基金(61430037, 11474036)、吉林省科技厅项目(20140520139JH, 20170520157JH,20170414016GH)、吉林省教育厅基金(2015174)、2014年度吉林省博士后科研项目(201524)

收稿日期:2017-09-07

修改稿日期:--

网络出版日期:--

作者单位    点击查看

韩晓媚:长春理工大学 高功率半导体激光国家重点实验室, 长春 130022
李占国:长春理工大学 光电工程学院, 长春 130022
王勇:长春理工大学 高功率半导体激光国家重点实验室, 长春 130022
卢小香:长春理工大学 高功率半导体激光国家重点实验室, 长春 130022

联系人作者:韩晓媚(hanxm123@163.com)

备注:韩晓媚(1991-), 女, 硕士研究生, 主要研究方向为微结构;

【1】Ko D H, Tumbleston J R, Zhang L, et al. Photonic crystal geometry for organic solar cells[J]. Nano Letters, 2009, 9(7):2742-2746.

【2】Mallick S B, Agrawal M, Peumans P. Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells[J]. Optics Express, 2010, 18(6):5691-5706.

【3】Zeng L, Yi Y, Hong C, et al. Efficiency enhancement in Si solar cells by textured photonic crystal back reflector [J]. Applied Physics Letters, 2006, 89(11):111111.

【4】Sergeant N P, Hadipour A, Niesen B, et al. Design of transparent anodes for resonant cavity enhanced light harvesting in organic solar cells[J]. Advanced Materials, 2012, 24(6):728-732.

【5】Agrawal M, Peumans P. Broadband optical absorption enhancement through coherent light trapping in thin film photovoltaic cells[J]. Optics Express, 2008, 16(8):5385-5396.

【6】Atwater H A, Polman A. Plasmonics for improved photovoltaic devices[J]. Nature Materials, 2010, 9(3):205-213.

【7】Dunber R B, Pfadler T, Schmidt-Mende L. Highly absorbing solar cells--a survey of plasmonic nanostructures[J]. Optics Express, 2012, 20(102):A177-A189.

【8】Kang M G, Xu T, Park H J, et al. Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes[J]. Advanced Materials, 2010, 22(39):4378-4383.

【9】Niggemann M, Glatthaar M, Lewer P, et al. Functional microprism substrate for organic solar cells[J]. Thin Solid Films, 2006, 511:628-633

【10】Reilly III T H, Van de Lagemaat J, Tenent R C, et al. Surface-plasmon enhanced transparent electrodes in organic photovoltaics[J]. Applied Physics Letters, 2008, 92(24):214

【11】Yun J, Wang W, Kim S M, et al. Light trapping in bendable organic solar cells using silica nanoparticle arrays[J]. Energy & Environmental Science, 2015, 8(3):932-940.

【12】Niggemann M, Riede M, Gombert A, et al. Light trapping in organic solar cells[J]. Physica Status Solidi (a), 2008, 205(12):2862-2874.

【13】Ko D H, Tumbleston J R, Gadisa A, et al. Light-trapping nanostructures in organic photovoltaic cells[J]. Journal of Materials Chemistry, 2011, 21(41):16293-16303.

【14】Stratakis E, Kymakis E. Nanoparticle-based plasmonic organic photovoltaic devices[J]. Materials Today, 2013, 16(4):133-146.

【15】Gan Q, Bartoli F J, Kafafi Z H. Plasmonic enhanced organic photovoltaics: Breaking the 10% efficiency barrier[J]. Advanced Materials, 2013, 25(17):2385-2396.

【16】Chou C H, Chen F C. Plasmonic nanostructures for light trapping in organic photovoltaic devices[J]. Nanoscale,2014, 6(15):8444-8458

【17】Choy W C H, Chan W K, Yuan Y. Recent advances in transition metal complexes and light management engineering in organic optoelectronic devices[J]. Advanced Materials, 2014, 26(31):5368-5399.

引用该论文

HAN Xiaomei,LI Zhanguo,WANG Yong,LU Xiaoxiang. Study on Improving Efficiency of P3HT:PCBM Organic Solar Cells with 300 nm Periodic Hole Patterns[J]. Optoelectronic Technology, 2018, 38(1): 27-31

韩晓媚,李占国,王勇,卢小香. 采用300 nm周期孔阵图形提高P3HT:PCBM有机太阳能电池效率研究[J]. 光电子技术, 2018, 38(1): 27-31

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF