首页 > 论文 > 光电子技术 > 38卷 > 1期(pp:32-39)

基于加权融合策略的单幅图像去雾算法

Single Image Dehazing Algorithm Based on the Weighted Fusion Strategy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于暗元先验的去雾算法在利用边缘保护操作消除景深突变处产生的光晕现象时没有区分边缘的类型, 导致了透射率的估计不合理, 降低了去雾的质量。提出一种基于加权融合策略的透射率估计方法, 通过块级暗通道和像素级暗通道的相关特性获取景深信息导向图, 从而在景深突变处和非景深突变的局部合理选取像素级暗通道和块级暗通道, 保护了景深边缘处的突变性, 同时减少了局部纹理边缘噪声的影响, 获得了更准确的透射率估计结果。实验结果表明, 该算法能有效避免光晕现象, 改善局部细节模糊的问题, 得到更优的去雾视觉效果。

Abstract

The haze removal algorithm based on dark channel prior uses edge protection operation to eliminate the halo artifacts effect caused by abrupt change at depth edges, which is unable to distinguish types of edges, making the estimated transmission map inaccurate,and reducing the quality of dehazing. A method via weighted fusion strategy was proposed to estimate transmission, through the property of pixel-wise dark channel and block-wise dark channel to obtain the depth information guided map,thereby the pixel-wise dark channel and block-wise dark channel were selected reasonably at edges of depth abrupt change and the rest regions. It protected the discontinuity of depth edges, reduced the impact of local texture edge noise and acquired more accurate estimation of transmission. Experimental results show that the algorithm can effectively avoid the phenomenon of the halo, improve the fuzziness of local details and acquire better visual effect of dehazing.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.19453/j.cnki.1005-488x.2018.01.006

所属栏目:研究与试制

基金项目:国家自然科学基金项目(U1531110); 中央高校基本科研业务费专项基金项目(NZ2015202)

收稿日期:2017-11-07

修改稿日期:--

网络出版日期:--

作者单位    点击查看

王崟:南京航空航天大学 自动化学院, 南京 211106
王敬东:南京航空航天大学 自动化学院, 南京 211106
魏雪迎:南京航空航天大学 自动化学院, 南京 211106
刘云霄:南京航空航天大学 自动化学院, 南京 211106

联系人作者:王崟(wangyin_nuaa@163.com)

备注:王崟(1992-), 男, 硕士研究生, 主要研究方向为数字图像处理;

【1】Nayar S K, Narasimhan S G. Vision in bad weather[C]. The Proceedings of the Seventh IEEE International Conference on Computer Vision. IEEE,Kerkyra, 2002:820-827.

【2】He K, Sun J, Tang X. Single image haze removal usingdark channel prior[C]. IEEE Conference on Computer Vision and Pattern Recognition, Miami,USA: IEEE Press, 2009:1956-1963.

【3】He K, Sun J, Tang X. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine, 2013, 35(6):1307-1409.

【4】Park D, Han D K, Ko H. Single image haze removal with WLS-based edge-preserving smoothing filter[C]. IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE,Vancouver, 2013:2469-2473.

【5】Gibson K B, Nguyen T Q. Fast single image fog removal using the adaptive Wiener filter[C]. IEEE International Conference on Image Processing. IEEE,Melbourne, 2014:714-718.

【6】Yu J, Xiao C, Li D. Physics-based fast single image fog removal[C]. IEEE, International Conference on Signal Processing. IEEE,Beijing, 2010:1048-1052.

【7】Xiao C, Gan J. Gan, J. Fast image dehazing using guided joint bilateral filter[J]. Visual Computer, 2012, 28(6-8):713-721.

【8】Gibson K, Vo D, Nguyen T. An investigation in dehazing compressed images and video[C]. Oceans. IEEE,Seattle, 2010:1-8.

【9】Yu J, Liao Q. Fast single image fog removal using edge-preserving smoothing[C]. IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, Prague, 2011:1245-1248.

【10】Liu C, Zhu J, Peng X. Image Enhancement system based on improved dark channel prior[C]. International Conference on Electromechanical Control Technology and Transportation,Zhuhai, 2015.

【11】Meng G, Wang Y, Duan J, et al. Efficient image dehazingwith boundary constraint and contextual regularization[C].IEEE International Conference on Computer Vision. IEEE,Sydney, 2014:617-624.

【12】Shiau Y H, Chen P Y, Yang H Y, et al. Weighted haze removal method with halo prevention [J]. Journal of Visual Communication & Image Representation, 2014, 25(2):445-453.

【13】Bui T M, Tran H N, Kim W, et al. Segmenting dark channel prior in single image dehazing[J]. Electronics Letters, 2014, 50(7):516-518.

【14】Yu T, Riaz I, Piao J, et al. Real-time single image dehazing using block-to-pixel interpolation and adaptive dark channel prior[J]. Image Processing Iet, 2015, 9(9):725-734.

【15】Liang Z, Dai Y. Single image dehazingbased on combining dark channel prior and scene radiance constraint[J]. Chinese Journal of Electronics, 2016, 25(6):1114-1120.

【16】Mccartney E J, Jr F F H. Optics of the atmosphere: scattering by molecules and particles[J]. IEEE Journal of Quantum Electronics, 1977, 14(9):698-699.

【17】Zhang Q, Shen X, Xu L, et al. Rolling guidance filter[C]∥ European Conference on Computer Vision,Zurich, 2014:815-830.

【18】Fattal R. Dehazing using color-lines[J]. Acm Transactions on Graphics, 2014, 34(1):1-14.

【19】Eskicioglu A M, Fisher P S. Image quality measures and their performance[J]. IEEE Transactions on Communications, 1995, 43(12):2959-2965.

【20】Hautiere N, Tarel J-P, Aubert D, et al. Blind contrast enhancement assessment by gradient rationing at visible edges[J]. Image Analysis and Stereology Journal,2009:87-95.

引用该论文

WANG Yin,WANG Jingdong,WEI Xueying,LIU Yunxiao. Single Image Dehazing Algorithm Based on the Weighted Fusion Strategy[J]. Optoelectronic Technology, 2018, 38(1): 32-39

王崟,王敬东,魏雪迎,刘云霄. 基于加权融合策略的单幅图像去雾算法[J]. 光电子技术, 2018, 38(1): 32-39

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF