首页 > 论文 > 光学学报 > 38卷 > 5期(pp:0511002--1)

基于稳健性主成分分析算法的光学相干层析成像去除散斑噪声的研究

Speckle Noise Reduction of Optical Coherence Tomography Based on Robust Principle Component Analysis Algorithm

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了消除光学相干层析成像(OCT)系统中存在的大量散斑噪声,引入了稳健性主成分分析(RPCA)算法。通过分析生物组织在OCT中散斑的产生机制,从而了解OCT系统中散斑噪声的特点。结合OCT系统自身的特点,证明基于RPCA算法的低秩矩阵恢复模型对OCT系统消除散斑噪声有良好的适用性。利用RPCA算法,可以得到将OCT原始图像分解成散斑噪声图像和样品截面图像的最佳估计。RPCA算法能在分离散斑噪声的同时,保留样品自身结构的散斑图样,有效地避免了伪影的生成。通过对比处理后和处理前的图像,结果表明,RPCA算法能够有效地抑制散斑噪声,提高信噪比,改善OCT图像效果。

Abstract

Robust principle component analysis (RPCA) algorithm is introduced to eliminate the mass speckle noise in optical coherence tomography (OCT) system. We understand the characteristics of speckle noise in OCT system by analyzing the speckle generation mechanism in OCT system. Combining the characteristics of OCT system itself, the low-rank matrix recovered model based on RPCA algorithm is proved to be suitable for the speckle noise reduction in OCT system. The best estimation which decomposes the original image of OCT into speckle noise image and sample cross section image can be obtained based on the RPCA algorithm. RPCA algorithm can retain the speckle patterns of the sample’s own structure while separating the speckle noise, and avoid the generation of the artifact effectively. The result shows that RPCA algorithm can effectively suppress the speckle noise, enhance the signal-to-noise ratio, and improve the effect of OCT images, through comparing the images before and after processing.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O436;TN911.73;TP391

DOI:10.3788/AOS201838.0511002

所属栏目:成像系统

基金项目:国家自然科学基金(61575067)

收稿日期:2017-10-23

修改稿日期:2017-12-11

网络出版日期:--

作者单位    点击查看

袁治灵:华南师范大学物理与电信工程学院, 广东 广州 510006
陈俊波:华南师范大学物理与电信工程学院, 广东 广州 510006
黄伟源:华南师范大学物理与电信工程学院, 广东 广州 510006
魏波:华南师范大学物理与电信工程学院, 广东 广州 510006
唐志列:华南师范大学物理与电信工程学院, 广东 广州 510006华南师范大学物理学科基础课国家级实验教学示范中心, 广东 广州 510006

联系人作者:唐志列(tangzhl@scnu.cdu.cn)

备注:袁治灵(1993-),男,硕士研究生,主要从事OCT、图像处理等方面的研究。E-mail: 1282449098@qq.com

【1】Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178-1181.

【2】Brezinski M E. Optical coherence tomography: principles and applications[M]. Cambridge: Academic Press Inc, 2005: 333-394.

【3】Choma M A, Sarunic M V, Yang C H, et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Optics Express, 2003, 11(18): 2183-2189.

【4】Goodman J W. Speckle phenomena in optics: theory and applications[M]. Chao Q Z, Chen J B, Transl. Beijing: Science Press, 2009: 165-166.
古德曼. 光学中的散斑现象: 理论与应用[M]. 曹其志, 陈家碧, 译. 北京: 科学出版社, 2009: 165-166.

【5】Yao X L, Ji K H, Liu G P, et al. Blood flow imaging by optical coherence tomography based on speckle variance and doppler algorithm[J]. Laser & Optoelectronics Progress, 2017, 54(3): 031702.
姚辛励, 季琨皓, 刘桂鹏, 等. 基于散斑方差和多普勒算法的光学相干层析术血流成像[J]. 激光与光电子学进展, 2017, 54(3): 031702.

【6】Popov I, Weatherbee A, Vitkin I A. Statistical properties of dynamic speckles from flowing Brownian scatterers in the vicinity of the image plane in optical coherence tomography[J]. Biomedical Optics Express, 2017, 8(4): 2004.

【7】Yang L, Hong W, Wang C, et al. Flow velocity measurement based on speckle in optical coherence tomography[J]. Chinese Journal of Lasers, 2012, 39(5): 0504002.
杨柳, 洪威, 王川, 等. 基于光学相干层析散斑的流速测量方法[J]. 中国激光, 2012, 39(5): 0504002.

【8】Liba O, Lew M D, Sorelle E D, et al. Erratum: speckle-modulating optical coherence tomography in living mice and humans[J]. Nature Communications, 2017, 8: 15845.

【9】Adler D C, Ko T H, Fujimoto J G. Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter[J]. Optics Letters, 2004, 29(24): 2878-2880.

【10】Jian Z P, Yu Z X, Yu L F, et al. Speckle attenuation in optical coherence tomography by curvelet shrinkage[J]. Optics Letters, 2009, 34(10): 1516-1518.

【11】Wang L Z, Meng Z, Yao X S, et al. Adaptive speckle reduction in OCT volume data based on block-matching and 3-d filtering[J]. IEEE Photonics Technology Letters, 2012, 24(20): 1802-1804.

【12】Yu H C, Gao J L, Li A T. Probability-based non-local means filter for speckle noise suppression in optical coherence tomography images[J]. Optics Letters, 2016, 41(5): 994-997.

【13】Moore B C. Principal component analysis in linear systems: controllability, observability, and model reduction[J]. IEEE Transactions on Automatic Control, 1981, 26(1): 17-32.

【14】Wright J, Ganesh A, Rao S, et al. Robust principal component analysis: exact recovery of corrupted low-rank matrices[C]. Advances in Neural Information Processing Systems, 2009: 2080-2088.

【15】Candès E J, Recht B. Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics, 2009, 9(6): 717.

【16】Candès E J, Li X D, Ma Y, et al. Robust principal component analysis [J]. Journal of the ACM, 2009, 58(3): 11.

【17】Lin Z C, Chen M M, Ma Y, et al. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[J]. arXiv Preprint arXiv: 1009.5055, 2010.

【18】Huynh-Thu Q, Ghanbari M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics Letters, 2008, 44(13): 800-801.

【19】Donoho D L, Johnstone J M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425-455.

【20】Welvaert M, Rosseel Y. On the definition of signal-to-noise ratio and contrast-to-noise ratio for fMRI data[J]. Plos One, 2013, 8(11): e77089.

【21】Anfinsen S N, Doulgeris A P, Eltoft T. Estimation of the equivalent number of looks in polarimetric synthetic aperture radar imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11): 3795-3809.

引用该论文

Yuan Zhiling,Chen Junbo,Huang Weiyuan,Wei Bo,Tang Zhilie. Speckle Noise Reduction of Optical Coherence Tomography Based on Robust Principle Component Analysis Algorithm[J]. Acta Optica Sinica, 2018, 38(5): 0511002

袁治灵,陈俊波,黄伟源,魏波,唐志列. 基于稳健性主成分分析算法的光学相干层析成像去除散斑噪声的研究[J]. 光学学报, 2018, 38(5): 0511002

被引情况

【1】郭思阳,林嘉睿,杨凌辉,邾继贵. 室内空间测量定位系统共模误差分析与消除. 激光与光电子学进展, 2019, 56(4): 41201--1

【2】高阳,李中梁,张建华,南楠,王瑄,王向朝. 光学相干层析成像图像中角膜厚度的自动测量方法. 光学学报, 2019, 39(3): 311003--1

【3】邱岳,唐晨,徐敏,黄圣鉴,雷振坤. 基于剪切波变换的改进全变分散斑去噪方法. 激光与光电子学进展, 2020, 57(2): 21003--1

【4】黄伟源,吴家怡,任汉宏,吴南寿,魏波,唐志列. 光热光学相干层析成像中基于小波变换的旋转核变换去噪算法. 激光与光电子学进展, 2020, 57(22): 221005--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF