首页 > 论文 > 光学学报 > 38卷 > 5期(pp:513003--1)

基于石墨烯的高效复合波导调制器研究

Study of Highly-Efficient Composite Waveguide Modulator Based on Graphene

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出了一种基于石墨烯的复合波导调制器,用严格的三维数值仿真结果展示了该调制器的工作状态。利用调制器狭缝中的表面等离激元对电磁波的强约束,增强了光与石墨烯间的相互作用,提高了调制器的调制性能,调制效率可达0.197 dB·μm-1。在调制器长度为15 μm时,可实现调制深度为3 dB的开关键控效应,此时的插入损耗为0.4 dB,调制带宽可达1.85 GHz。设计了与输入波导相连接的耦合器,在耦合器总长度仅为1 μm的条件下,实现了86.6%的耦合效率。

Abstract

A composite waveguide modulator based on graphene is proposed and the rigid three-dimensional numerical simulation results demonstrate the working states of this modulator. The surface plasmon polaritons in the slits of this modulator are used to strongly confine the electromagnetic wave, which enhances the interaction between the light and the graphene and thus improves the modulation performance of this modulator. Its modulation efficiency can reach 0.197 dB·μm-1. The on-off keying modulation with a modulation depth of 3 dB can be achieved when the modulator length is 15 μm. Meanwhile, the insertion loss is 0.4 dB and the modulation bandwidth is 1.85 GHz. The coupler connecting the input waveguide is designed, and the coupling efficiency can reach 86.6% when the coupler length is just 1 μm.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN256

DOI:10.3788/aos201838.0513003

所属栏目:集成光学

基金项目:国家自然科学基金(61575174)、浙江省杰出青年基金(LR16F050002)、中央高校基本科研业务费(2017XZZX009-02)、浙江大学现代光学仪器国家重点实验室开放课题

收稿日期:2017-11-07

修改稿日期:2017-12-14

网络出版日期:--

作者单位    点击查看

王少亮:浙江大学先进微纳电子器件智能系统及应用重点实验室, 浙江 杭州 310027
叶子威:浙江大学先进微纳电子器件智能系统及应用重点实验室, 浙江 杭州 310027
彭希亮:浙江大学先进微纳电子器件智能系统及应用重点实验室, 浙江 杭州 310027
郝然:浙江大学先进微纳电子器件智能系统及应用重点实验室, 浙江 杭州 310027

联系人作者:郝然(rhao@zju.edu.cn)

备注:王少亮(1991—),男,硕士研究生,主要从事光子器件方面的研究。E-mail: 21431012@zju.edu.cn

【1】Doerr C R, Zhang L, Winzer P J, et al. Compact high-speed InP DQPSK modulator[J]. IEEE Photonics Technology Letters, 2007, 19(15): 1184-1186.

【2】Griffin R A, Jones S K, Whitbread N, et al. InP Mach-Zehnder modulator platform for 10/40/100/200-Gb/s operation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(6): 158-166.

【3】Thomson D J, Gardes F Y, Fedeli J M, et al. 50-Gb/s silicon optical modulator[J]. IEEE Photonics Technology Letters, 2012, 24(4): 234-236.

【4】Ding J F, Ji R Q, Zhang L, et al. Electro-optical response analysis of a 40 Gb/s silicon Mach-Zehnder optical modulator[J]. Journal of Lightwave Technology, 2013, 31(14): 2434-2440.

【5】Hao R, Du W, Chen H S, et al. Ultra-compact optical modulator by graphene induced electro-refraction effect[J]. Applied Physics Letters, 2013, 103(6): 061116.

【6】Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.

【7】Mak K F, Sfeir M Y, Wu Y, et al. Measurement of the optical conductivity of graphene[J]. Physical Review Letters, 2008, 101(19): 196405.

【8】Tan Y W, Zhang Y, Stormer H L, et al. Temperature dependent electron transport in graphene[J]. European Physical Journal Special Topics, 2007, 148(1): 15-18.

【9】Liu M, Yin X B, Ulin-Avila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64-67.

【10】Xiao Y, Zhang J, Cai X, et al. Fiber-optic humidity sensing based on graphene[J]. Acta Optica Sinica, 2015, 35(4): 0406005.
肖毅, 张军, 蔡祥, 等. 基于石墨烯的光纤湿度传感研究[J]. 光学学报, 2015, 35(4): 0406005.

【11】Liao G Z, Zhang J, Cai X, et al. All-fiber temperature sensor based on graphene[J]. Acta Optica Sinica, 2013, 33(7): 0706004.
廖国珍, 张军, 蔡祥, 等. 基于石墨烯的全光纤温度传感器的研究[J]. 光学学报, 2013, 33(7): 0706004.

【12】Liu Y Z, Zhang Y P, Cao Y Y, et al. Modulator of tunable modulation depth on graphene metamaterial[J]. Acta Optica Sinica, 2016, 36(10): 1016002.
刘元忠, 张玉萍, 曹妍妍, 等. 基于石墨烯超材料深度可调的调制器[J]. 光学学报, 2016, 36(10): 1016002.

【13】Peng X L, Hao R, Ye Z W, et al. Highly efficient graphene-on-gap modulator by employing the hybrid plasmonic effect[J]. Optics Letters, 2017, 42(9): 1736-1739.

【14】Phatak A, Cheng Z Z, Qin C, et al. Design of electro-optic modulators based on graphene-on-silicon slot waveguides[J]. Optics Letters, 2016, 41(11): 2501-2504.

【15】Du W, Li E P, Hao R. Tunability analysis of a graphene-embedded ring modulator[J]. IEEE Photonics Technology Letters, 2014, 26(20): 2008-2011.

【16】Guan X W, Wu H, Shi Y C, et al. Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire[J]. Optics Letters, 2013, 38(16): 3005-3008.

【17】Youngblood N, Anugrah Y, Ma R, et al. Multifunctional graphene optical modulator and photodetector integrated on silicon waveguides[J]. Nano Letters, 2014, 14(5): 2741-2746.

【18】Almeida V R, Xu Q F, Barrios C A, et al. Guiding and confining light in void nanostructure[J]. Optics Letters, 2004, 29(11): 1209-1211.

【19】Cheng Z Z, Chen X, Wong C Y, et al. Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide[J]. Optics Letters, 2012, 37(7): 1217-1219.

【20】Huang B H, Lu W B, Li X B, et al. Waveguide-coupled hybrid plasmonic modulator based on graphene[J]. Applied Optics, 2016, 55(21): 5598-5602.

引用该论文

Wang Shaoliang,Ye Ziwei,Peng Xiliang,Hao Ran. Study of Highly-Efficient Composite Waveguide Modulator Based on Graphene[J]. Acta Optica Sinica, 2018, 38(5): 0513003

王少亮,叶子威,彭希亮,郝然. 基于石墨烯的高效复合波导调制器研究[J]. 光学学报, 2018, 38(5): 0513003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF