首页 > 论文 > 光学学报 > 38卷 > 5期(pp:531001--1)

ZnO∶W透明导电薄膜的调制生长与表面氢化处理

Modulation Growth and Surface Hydrogenation Treatment of ZnO∶W Transparent Conductive Films

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用射频磁控溅射法,在不同溅射功率下沉积ZnO∶W薄膜层55 min,然后通入体积分数为5%的氢气,并保持溅射参数不变,表面氢化处理8 min,获得了表面具有绒面结构的ZnO∶W透明导电薄膜。对样品的显微形貌、结构和表面绒度等性能进行了测试与分析,结果表明:在200 W的溅射功率条件下,氢化处理8 min获得的ZnO∶W样品表面绒度达到92.82, 同时具备优异的导电性能(电阻率均值3.93×10-4 Ω·cm)。这种表面绒面结构有望进一步提高ZnO透明导电电极电池的转换效率。

Abstract

Under different sputtering powers, the ZnO∶W film layers are deposited for 55 min by the radio frequency magnetron sputtering method, and then are hydrotreated for 8 minutes by maintaining the stability of sputtering parameters and adding hydrogen with a volume fraction of 5%. The ZnO∶W transparent conductive films with surface-textured structures are obtained. The micro-morphology, structure and surface-texturing degree of samples are tested and analyzed. The results indicate that, the surface-texturing degree of the ZnO∶W samples after hydrogenation for 8 min at the sputtering power of 200 W reaches 92.82, meanwhile, their electro-conductivity is superior whose average electrical resistivity is 3.93×10-3 Ω·cm. It is hopeful for this surface textured structure to further improve the conversion efficiency of the ZnO transparent conductive electrode cells.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN204

DOI:10.3788/aos201838.0531001

所属栏目:薄膜

基金项目:国家自然科学基金(61464005)、江西省科技厅自然科学重点项目(20143ACB21004,20151BDH80031,20151BAB212008)、江西省教育厅自然科学项目(GJJ150912)

收稿日期:2017-11-13

修改稿日期:2017-12-08

网络出版日期:--

作者单位    点击查看

胡克艳:景德镇陶瓷大学机械与电子工程学院, 江西 景德镇 333403
陈义川:景德镇陶瓷大学机械与电子工程学院, 江西 景德镇 333403
张效华:景德镇陶瓷大学机械与电子工程学院, 江西 景德镇 333403
朱文均:景德镇陶瓷大学机械与电子工程学院, 江西 景德镇 333403
帅伟强:景德镇陶瓷大学机械与电子工程学院, 江西 景德镇 333403
胡跃辉:景德镇陶瓷大学机械与电子工程学院, 江西 景德镇 333403

联系人作者:胡跃辉(8489023@163.com)

备注:胡克艳(1983-),男,博士,副教授,主要从事半导体材料及器件方面的研究。E-mail: hukeyan123@126.com。

【1】Wegener M, Eckert D, Roosen A. Manufacture of sub-μm thin, particulate-based ITO layers by roller coating[J]. Journal of the European Ceramic Society, 2015, 35(8): 2321-2332.

【2】Cho S J, An T, Kim J Y, et al. Superhydrophobic nanostructured silicon surfaces with controllable broadband reflectance[J]. Chemical Communications, 2011, 47(21): 6108-6110.

【3】Cui H W, Zhang F C, Shao T T. First-principels study on electronic structure and optical properties of Sn-doped ZnO[J]. Acta Optica Sinica, 2016, 36(7): 0716002.
崔红卫, 张富春, 邵婷婷. Sn掺杂ZnO电子结构与光学性质的第一性原理研究[J]. 光学学报, 2016, 36(7): 0716002.

【4】Xu H, Lu N, Shi G, et al. Biomimetic antireflective hierarchical arrays[J]. Langmuir, 2011, 27(8): 4963-4967.

【5】Xiu Y, Zhang S, Yelundur V, et al. Superhydrophobic and low light reflectivity silicon surfaces fabricated by hierarchical etching[J]. Langmuir, 2008, 24(18): 10421-10426.

【6】Barshilia H C, John S, Mahajan V. Nanometric multi-scale rough, transparent and anti-reflective ZnO superhydrophobic coatings on high temperature solar absorber surfaces[J]. Solar Energy Materials and Solar Cells, 2012, 107: 219-224.

【7】Yang C H, Ma Z Q, Yuan J H. Influence of substrate temperature on properties of aluminum-doped zinc oxide films prepared by DC magnetron sputtering[J]. Acta Optica Sinica, 2011, 31(5): 0531001.
杨昌虎, 马忠权, 袁剑辉. 基底温度对直流磁控溅射制备掺铝氧化锌薄膜性能的影响[J]. 光学学报, 2011, 31(5): 0531001.

【8】Müller J, Rech B, Springer J, et al. TCO and light trapping in silicon thin film solar cells[J]. Solar Energy, 2004, 77(6): 917-930.

【9】Zhao L, Zuo Y H, Zhou C L, et al. A highly efficient light-trapping structure for thin-film silicon solar cells[J]. Solar Energy, 2010, 84(1): 110-115.

【10】Fernandez S, Naranjo F B. Optimization of aluminum-doped zinc oxide films deposited at low temperature by radio-frequency sputtering on flexible substrates for solar cell applications[J]. Solar Energy Materials and Solar Cells, 2010, 94(2): 157-163.

【11】Gombert A, Glaubitt W, Rose K, et al. Antireflective transparent covers for solar devices[J]. Solar Energy, 2000, 68(4): 357-360.

【12】Huang Y F, Chattopadhyay S, Jen Y J, et al. Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures[J]. Nature Nanotechnology, 2007, 2(12): 770-774.

【13】Kobayashi H, Moronuki N, Kaneko A. Self-assembly of fine particles applied to the production of antireflective surfaces[J]. International Journal of Precision Engineering and Manufacturing, 2008, 9(1): 25-29.

【14】Min W L, Jiang B, Jiang P. Bioinspired self-cleaning antireflection coatings[J]. Advanced Materials, 2008, 20(20): 3914-3918.

【15】Nakanishi T, Hiraoka T, Fujimoto A, et al. Large area fabrication of moth-eye antireflection structures using self-assembled nanoparticles in combination with nanoimprinting[J]. Japanese Journal of Applied Physics, 2010, 49(7R): 075001.

【16】Tadanaga K, Yamaguchi N, Uraoka Y, et al. Anti-reflective properties of nano-structured alumina thin films on poly (methyl methacrylate) substrates by the sol-gel process with hot water treatment[J]. Thin Solid Films, 2008, 516(14): 4526-4529.

【17】Chao Y C, Chen C Y, Lin C A, et al. Antireflection effect of ZnO nanorod arrays[J]. Journal of Materials Chemistry, 2010, 20(37): 8134-8138.

【18】Liu Y, Das A, Xu S, et al. Hybridizing ZnO nanowires with micropyramid silicon wafers as superhydrophobic high-efficiency solar cells[J]. Advanced Energy Materials, 2012, 2(1): 47-51.

【19】Han S Y, Paul B K, Chang C. Nanostructured ZnO as biomimetic anti-reflective coatings on textured silicon using a continuous solution process[J]. Journal of Materials Chemistry, 2012, 22(43): 22906-22912.

【20】Stratakis E, Ranella A, Fotakis C. Biomimetic micro/nanostructured functional surfaces for microfluidic and tissue engineering applications[J]. Biomicrofluidics, 2011, 5(1): 013411.

【21】Li B, Huang L, Ren N, et al. Superhydrophobic and anti-reflective ZnO nanorod-coated FTO transparent conductive thin films prepared by a three-step method[J]. Journal of Alloys and Compounds, 2016, 674: 368-375.

【22】Yin S, Men X, Sun H, et al. Enhanced photocurrent generation of bio-inspired graphene/ZnO composite films[J]. Journal of Materials Chemistry A, 2015, 3(22): 12016-12022.

【23】Griffin G L, Yates JJ. Coadsorption studies of CO and H2 on ZnO[J]. The Journal of Chemical Physics, 1982, 77(7): 3751-3758.

【24】Scarano D, Bertarione S, Spoto G, et al. FTIR spectroscopy of hydrogen, carbon monoxide, and methane adsorbed and co-adsorbed on zinc oxide[J]. Thin Solid Films, 2001, 400(1): 50-55.

【25】Chatchai P, Murakami Y, Kishioka S, et al. Efficient photocatalytic activity of water oxidation over WO3/BiVO4 composite under visible light irradiation[J]. Electrochimica Acta, 2009, 54(3): 1147-1152.

引用该论文

Hu Keyan,Chen Yichuan,Zhang Xiaohua,Zhu Wenjun,Shuai Weiqiang,Hu Yuehui. Modulation Growth and Surface Hydrogenation Treatment of ZnO∶W Transparent Conductive Films[J]. Acta Optica Sinica, 2018, 38(5): 0531001

胡克艳,陈义川,张效华,朱文均,帅伟强,胡跃辉. ZnO∶W透明导电薄膜的调制生长与表面氢化处理[J]. 光学学报, 2018, 38(5): 0531001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF