首页 > 论文 > 中国激光 > 45卷 > 5期(pp:507001--1)

人体皮肤纤维细胞远程拉曼光谱检测研究

Remote Raman Spectra Detection of Human Skin Fibroblasts

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在具有表面增强拉曼散射(SERS)基底的锥形光纤探针表面生长人体皮肤纤维细胞, 研究了人体皮肤纤维细胞的远程拉曼光谱检测。采用熔融拉锥和化学腐蚀法制备锥形光纤探针, 通过化学自组装法将金纳米颗粒固化于锥形光纤探针表面制备出SERS锥形光纤探针。将人体皮肤纤维细胞置于金溶胶培养基混合液中培养, 并贴壁生长于SERS光纤探针表面;然后利用显微拉曼光谱仪通过远程检测得到人体皮肤纤维细胞的SERS光谱, 并以直接测量方式得到吞金颗粒和未吞金颗粒细胞的SERS光谱。结合远程检测和直接检测结果分析得到人体皮肤纤维细胞拉曼光谱的峰位归属, 以及各拉曼特征峰对应的细胞内部组分信息。利用锥形光纤探针能够深入组织内部实施远程检测, 有助于在线SERS测量在生物医学研究和诊断中的应用。人体皮肤纤维细胞的拉曼谱检测为在体研究低功率激光对延迟伤口愈合的机理提供了一种手段。

Abstract

The Raman spectra detection of human skin fibroblasts is studied by the growth of human skin fibroblasts on the surface of tapered fiber probe with surface enhanced Raman scattering (SERS) substrates. The tapered fiber probe is prepared by melt-pulling and chemical-etching method. The gold nanoparticles are cured by chemical self-assembly on the surface of the probe to prepare a tapered SERS fiber probe. The human skin fibroblasts are cultured on the surface of the SERS fiber probe inside the mixture of gold sol and culture medium. Then, using a micro-Raman spectrometer, we obtain the surface-enhanced Raman spectra of the human skin fibroblasts with remote detection method, meanwhile, we obtain the SERS spectra of the human skin fibroblasts with and without swallowing gold nanoparticles with direct measurement method. Based on the results of remote and direct detections, we analyze the Raman peak attribution of human skin fibroblasts, and the internal components information corresponding to the Raman characteristic peaks. The use of the tapered fiber probe allows the remote detection going deep inside the tissue, which may help the application of on-line SERS measurements in biomedical research and diagnosis. While Raman spectrum measurement of the human skin fibroblasts also provides means for the in vivo study on the mechanism of low power laser exposure in delaying wound healing.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TN253

DOI:10.3788/CJL201845.0507001

所属栏目:生物医学光子学与激光医学

基金项目:国家自然科学基金(61575120,61475095,61027015,61177088)、上海大学特种光纤与光接入网省部共建国家重点实验室培育基地开放课题(SKLSFO2015-01)

收稿日期:2017-09-15

修改稿日期:2017-11-02

网络出版日期:--

作者单位    点击查看

赵春芹:上海大学特种光纤与光接入网重点实验室, 上海先进通信与数据科学研究院, 上海大学通信与信息工程学院, 上海 200444
陈娜:上海大学特种光纤与光接入网重点实验室, 上海先进通信与数据科学研究院, 上海大学通信与信息工程学院, 上海 200444
陈振宜:上海大学特种光纤与光接入网重点实验室, 上海先进通信与数据科学研究院, 上海大学通信与信息工程学院, 上海 200444
张恒:上海大学特种光纤与光接入网重点实验室, 上海先进通信与数据科学研究院, 上海大学通信与信息工程学院, 上海 200444
刘书朋:上海大学特种光纤与光接入网重点实验室, 上海先进通信与数据科学研究院, 上海大学通信与信息工程学院, 上海 200444
王廷云:上海大学特种光纤与光接入网重点实验室, 上海先进通信与数据科学研究院, 上海大学通信与信息工程学院, 上海 200444

联系人作者:陈娜(na.chen@shu.edu.cn)

备注:赵春芹(1990-), 女, 硕士研究生, 主要从事光纤拉曼传感方面的研究。 E-mail: Crise@t.shu.edu.cn

【1】Cialla D, Mrz A, Bhme R, et al. Surface-enhanced Raman spectroscopy (SERS): progress and trends[J]. Analytical and Bioanalytical Chemistry, 2012, 403(1): 27-54.

【2】Zhang Y, Zhao S, Zheng J, et al. Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization[J]. TrAC Trends in Analytical Chemistry, 2017, 90: 1-13.

【3】Craig A P, Franca A S, Irudayaraj J. Surface-enhanced Raman spectroscopy applied to food safety[J]. Annual Review of Food Science and Technology, 2013, 4(1): 369-380.

【4】Zhu Q, Cao Y, Cao Y, et al. Rapid on-site TLC-SERS detection of four antidiabetes drugs used as adulterants in botanical dietary supplements[J]. Analytical and Bioanalytical Chemistry, 2014, 406(7): 1877-1884.

【5】Zheng J, He L. Surface-enhanced Raman spectroscopy for the chemical analysis of food[J]. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(3): 317-328.

【6】Jin Y, Ma P, Liang F, et al. Determination of malachite green in environmental water using cloud point extraction coupled with surface-enhanced Raman scattering[J]. Analytical Methods, 2013, 5(20): 5609-5614.

【7】Liu C, Zhang X, Li L, et al. Silver nanoparticle aggregates on metal fibers for solid phase microextraction-surface enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons[J]. Analyst, 2015, 140(13): 4668-4675.

【8】Wang W, Xu M, Guo Q, et al. Rapid separation and on-line detection by coupling high performance liquid chromatography with surface-enhanced Raman spectroscopy[J]. RSC Advances, 2015, 5(59): 47640-47646.

【9】Pang S, Yang T, He L. Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides[J]. TrAC Trends in Analytical Chemistry, 2016, 85: 73-82.

【10】Cho I H, Bhandari P, Patel P, et al. Membrane filter-assisted surface enhanced Raman spectroscopy for the rapid detection of E. coli O157∶H7 in ground beef[J]. Biosensors and Bioelectronics, 2015, 64: 171-176.

【11】Li M, Banerjee S R, Zheng C, et al. Ultrahigh affinity Raman probe for targeted live cell imaging of prostate cancer[J]. Chemical Science, 2016, 7(11): 6779-6785.

【12】Desmoulière A, Chaponnier C, Gabbiani G. Tissue repair, contraction, and the myofibroblast[J]. Wound Repair and Regeneration, 2005, 13(1): 7-12.

【13】Goodson W H, Hunt T K. Wound healing and the diabetic patient[J]. Surgery, Gynecology & Obstetrics, 1979, 149(4): 600-608.

【14】Greenhalgh D G. Wound healing and diabetes mellitus[J]. Clinics in Plastic Surgery, 2003, 30(1): 37-45.

【15】Franzén L E, Roberg K. Impaired connective tissue repair in streptozotocin-induced diabetes shows ultrastructural signs of impaired contraction[J]. Journal of Surgical Research, 1995, 58(4): 407-414.

【16】Esmaeelinejad M, Bayat M, Darbandi H, et al. The effects of low-level laser irradiation on cellular viability and proliferation of human skin fibroblasts cultured in high glucose mediums[J]. Lasers in Medical Science, 2014, 29(1): 121-129.

【17】Grossman N, Schneid N, Reuveni H, et al. 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species[J]. Lasers in Surgery and Medicine, 1998, 22(4): 212-218.

【18】Almeida-Lopes L, Rigau J, Zngaro R A, et al. Comparison of the low level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence[J]. Lasers in Surgery and Medicine, 2001, 29(2): 179-184.

【19】Hu W P, Wang J J, Yu C L, et al. Helium-neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria[J]. Journal of Investigative Dermatology, 2007, 127(8): 2048-2057.

【20】Igarashi A, Okochi H, Bradham D M, et al. Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair[J]. Molecular Biology of the Cell, 1993, 4(6): 637-645.

【21】Vogt A, Rancan F, Ahlberg S, et al. Interaction of dermatologically relevant nanoparticles with skin cells and skin[J]. Beilstein Journal of Nanotechnology, 2014, 5: 2363-2373.

【22】Kaminaka S, Ito T, Yamazaki H, et al. Near-infrared multichannel Raman spectroscopy toward real-time in vivo cancer diagnosis[J]. Journal of Raman Spectroscopy, 2002, 33(7): 498-502.

【23】Li D, Wang Y X, Jiao Q, et al. Effects of low intensity He-Ne laser irradiation on mouse skin fbroblasts, thymocytes and bone marrow cells[J]. Chinese Journal of Laser Medicine & Surgery, 2005, 14(4): 245-248.
李栋, 王元秀, 矫强, 等. 低强度He-Ne激光照射对小鼠皮肤成纤维细胞、胸腺细胞和骨髓细胞的影响[J]. 中国激光医学杂志, 2005, 14(4): 245-248.

【24】Wu D. Primary study of dot matrix laser assisted autogenous fibroblasts transdermal delivery [J]. Chinese Journal of Laser Medicine & Surgery, 2016, 15(5): 6-9.
吴迪. 点阵激光辅助自体成纤维细胞经皮递送的初步研究[J]. 中国激光医学杂志, 2016, 15(5): 6-9.

【25】Leroy M, Labbé J F, Ouellet M, et al. A comparative study between human skin substitutes and normal human skin using Raman microspectroscopy[J]. Acta Biomaterialia, 2014, 10(6): 2703-2711.

【26】Piredda P, Berning M, Boukamp P, et al. Subcellular Raman microspectroscopy imaging of nucleic acids and tryptophan for distinction of normal human skin cells and tumorigenic keratinocytes[J]. Analytical Chemistry, 2015, 87(13): 6778-6785.

【27】Li L, Liu S, Chen Z, et al. Remote detection of the surface-enhanced Raman spectrum with the optical fiber nanoprobe[J]. Optics & Spectroscopy, 2014, 116(4): 575-578.

【28】Pikov V, Siegel P H. Thermal monitoring: Raman spectrometer system for remote measurement of cellular temperature on a microscopic scale[J]. IEEE Engineering in Medicine and Biology Magazine, 2010, 29(1): 63-71.

【29】Chen Z, Dai Z, Chen N, et al. Gold nanoparticles-modified tapered fiber nanoprobe for remote SERS detection[J]. IEEE Photonics Technology Letters, 2014, 26(8): 777-780.

【30】Polwart E, Keir R L, Davidson C M, et al. Novel SERS-active optical fibers prepared by the immobilization of silver colloidal particles[J]. Applied Spectroscopy, 2000, 54(4): 522-527.

【31】Kottmann J P, Martin O J F, Smith D R, et al. Plasmon resonances of silver nanowires with a nonregular cross section[J]. Physical Review B, 2001, 64(23): 235402.

【32】Daniels J K, Chumanov G. Nanoparticle-mirror sandwich substrates for surface-enhanced Raman scattering[J]. The Journal of Physical Chemistry B, 2005, 109(38): 17936-17942.

【33】Yonzon C R, Haynes C L, Zhang X, et al. A glucose biosensor based on surface-enhanced Raman scattering: improved partition layer, temporal stability, reversibility, and resistance to serum protein interference[J]. Analytical Chemistry, 2004, 76(1): 78-85.

【34】McNichols R J, Cote G L. Optical glucose sensing in biological fluids: an overview[J]. Journal of Biomedical Optics, 2000, 5(1): 5-16.

【35】Yan B, Li B, Wen Z, et al. Label-free blood serum detection by using surface-enhanced Raman spectroscopy and support vector machine for the preoperative diagnosis of parotid gland tumors[J]. BMC Cancer, 2015, 15(1): 650.

【36】Tang H W, Yang X B, Kirkham J, et al. Probing intrinsic and extrinsic components in single osteosarcoma cells by near-infrared surface-enhanced Raman scattering[J]. Analytical Chemistry, 2007, 79(10): 3646-3653.

【37】Cheng W T, Liu M T, Liu H N, et al. Micro-Raman spectroscopy used to identify and grade human skin pilomatrixoma[J]. Microscopy Research and Technique, 2005, 68(2): 75-79.

【38】Movasaghi Z, Rehman S, Rehman I U. Raman spectroscopy of biological tissues[J]. Applied Spectroscopy Reviews, 2007, 42(5): 493-541.

【39】Leroy M, Labbé J F, Ouellet M, et al. A comparative study between human skin substitutes and normal human skin using Raman microspectroscopy[J]. Acta Biomaterialia, 2014, 10(6): 2703-2711.

【40】Sigurdsson S, Philipsen P A, Hansen L K, et al. Detection of skin cancer by classification of Raman spectra[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(10): 1784-1793.

【41】Bodanese B, Silveira L, Jr, Albertini R, et al. Differentiating normal and basal cell carcinoma human skin tissues in vitro using dispersive Raman spectroscopy: a comparison between principal components analysis and simplified biochemical models[J]. Photomedicine and Laser Surgery, 2010, 28(S1): S119-S127.

【42】Barry B W, Edwards H G M, Williams A C. Fourier transform Raman and infrared vibrational study of human skin: assignment of spectral bands[J]. Journal of Raman Spectroscopy, 1992, 23(11): 641-645.

【43】Caspers P J, Bruining H A, Puppels G J, et al. In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles[J]. Journal of Investigative Dermatology, 2001, 116(3): 434-442.

【44】Tang H, Yao H, Wang G, et al. NIR Raman spectroscopic investigation of single mitochondria trapped by optical tweezers[J]. Optics Express, 2007, 15(20): 12708-12716.

引用该论文

Zhao Chunqin,Chen Na,Chen Zhenyi,Zhang Heng,Liu Shupeng,Wang Tingyun. Remote Raman Spectra Detection of Human Skin Fibroblasts[J]. Chinese Journal of Lasers, 2018, 45(5): 0507001

赵春芹,陈娜,陈振宜,张恒,刘书朋,王廷云. 人体皮肤纤维细胞远程拉曼光谱检测研究[J]. 中国激光, 2018, 45(5): 0507001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF