Matter and Radiation at Extremes, 2018, 3 (1): 28, Published Online: May. 3, 2018   

Optimization of hole-boring radiation pressure acceleration of ion beams for fusion ignition

Author Affiliations
1 Key Laboratory for Laser Plasmas (MoE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2 Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240, China
3 SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
4 Institute of Laser Engineering, Osaka University, Osaka 565-0871, Japan
Abstract
In contrast to ion beams produced by conventional accelerators, ion beams accelerated by ultrashort intense laser pulses have advantages of ultrashort bunch duration and ultrahigh density, which are achieved in compact size. However, it is still challenging to simultaneously enhance their quality and yield for practical applications such as fast ion ignition of inertial confinement fusion. Compared with other mechanisms of laser-driven ion acceleration, the hole-boring radiation pressure acceleration has a special advantage in generating high-fluence ion beams suitable for the creation of high energy density state of matters. In this paper, we present a review on some theoretical and numerical studies of the hole-boring radiation pressure acceleration. First we discuss the typical field structure associated with this mechanism, its intrinsic feature of oscillations, and the underling physics. Then we will review some recently proposed schemes to enhance the beam quality and the efficiency in the hole-boring radiation pressure acceleration, such as matching laser intensity profile with target density profile, and using two-ion-species targets. Based on this, we propose an integrated scheme for efficient high-quality hole-boring radiation pressure acceleration, in which the longitudinal density profile of a composite target as well as the laser transverse intensity profile are tailored according to the matching condition.

S.M. Weng, Z.M. Sheng, M. Murakami, M. Chen, M. Liu, H.C. Wang, T. Yuan, J. Zhang. Optimization of hole-boring radiation pressure acceleration of ion beams for fusion ignition[J]. Matter and Radiation at Extremes, 2018, 3(1): 28.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!