Matter and Radiation at Extremes, 2018, 3 (2): 67, Published Online: May. 3, 2018  

Review of stopping power and Coulomb explosion for molecular ion in plasmas

Author Affiliations
1 College of Science, Dalian Maritime University, Dalian 116026, China
2 School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
3 School of Science, Xi'an Jiaotong University, Xi'an 710049, China
Abstract
We summarize our theoretical studies for stopping power of energetic heavy ion, diatomic molecular ions and small clusters penetrating through plasmas. As a relevant research field for the heavy ion inertial confinement fusion (HICF), we lay the emphasis on the dynamic polarization and correlation effects of the constituent ion within the molecular ion and cluster for stopping power in order to disclose the role of the vicinage effect on the Coulomb explosion and energy deposition of molecules and clusters in plasma. On the other hand, as a promising scheme for ICF, both a strong laser field and an intense ion beam are used to irradiate a plasma target. So the influence of a strong laser field on stopping power is significant. We discussed a large range of laser and plasma parameters on the coulomb explosion and stopping power for correlated-ion cluster and C60 cluster. Furthermore, in order to indicate the effects of different cluster types and sizes on the stopping power, a comparison is made for hydrogen and carbon clusters. In addition, the deflection of molecular axis for diatomic molecules during the Coulomb explosion is also given for the cases both in the presence of a laser field and laser free. Finally, a future experimental scheme is put forward to measure molecular ion stopping power in plasmas in Xi’an Jiaotong University of China.

Guiqiu Wang, He Yi, Yujiao Li, Yaochuan Wang, Dajun Liu, Fei Gao, Wei Liu, Jieru Ren, Xing Wang, Yongtao Zhao, Younian Wang. Review of stopping power and Coulomb explosion for molecular ion in plasmas[J]. Matter and Radiation at Extremes, 2018, 3(2): 67.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!