强激光与粒子束, 2018, 30 (4): 041003, 网络出版: 2018-05-04   

1064 nm和532 nm纳秒激光同时辐照熔石英损伤规律的研究

Laser induced damage characteristics in fused silica surface irradiated by 1064 nm and 532 nm ns laser simultaneously
叶成 1,2邱荣 1,2蒋勇 1,2高翔 1,2郭德成 1,2周强 1,2邓承付 1,2
作者单位
1 西南科技大学-中国工程物理研究院激光聚变研究中心极端条件物质特性联合实验室, 四川 绵阳 621010
2 西南科技大学 理学院, 四川 绵阳 621010
摘要
利用Nd:YAG激光器研究基频(1064 nm)与倍频(532 nm)单独辐照和同时辐照下熔石英的损伤规律,对损伤几率进行了测试,获得损伤几率曲线与典型损伤形貌。研究结果表明:双波长同时辐照下的初始损伤阈值总是小于单波长辐照下的初始损伤阈值;基频光中加入定量倍频光后,熔石英对基频光的吸收效率提高;并且双波长同时辐照下,熔石英损伤密度增大;原因主要是熔石英表面缺陷对不同波长吸收机制的差异。
Abstract
The wavelengths of 1064 nm and 532 nm of the pulsed Nd:YAG laser were used to irradiate the fused silica to study the interaction between different wavelengths of laser with fused silica. The laser induced damage characteristics in fused silica surface were researched under separate of simultaneous irradiation of 1064 nm and 532 nm wavelengths. Testing the damage probability under different energy density, we obtained the damage probability curves and typical damage morphologies. The results show that the initial damage threshold under simultaneous irradiation with 1064 nm and 532 nm is always less than that under single wavelength irradiation. Add a certain amount of 532 nm laser to 1064 nm laser, fused silica improves the absorption efficiency for 1064 nm. The damage density of fused silica increases under double wavelength simultaneous irradiation. The reason is that the surface defects of fused silica have different absorption mechanisms for different wavelengths.

叶成, 邱荣, 蒋勇, 高翔, 郭德成, 周强, 邓承付. 1064 nm和532 nm纳秒激光同时辐照熔石英损伤规律的研究[J]. 强激光与粒子束, 2018, 30(4): 041003. Ye Cheng, Qiu Rong, Jiang Yong, Gao Xiang, Guo Decheng, Zhou Qiang, Deng Chengfu. Laser induced damage characteristics in fused silica surface irradiated by 1064 nm and 532 nm ns laser simultaneously[J]. High Power Laser and Particle Beams, 2018, 30(4): 041003.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!