首页 > 论文 > Photonics Research > 6卷 > 5期(pp:363--1)

Self-locked orthogonal polarized dual comb in a microresonator

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Dual combs are an emerging tool to obtain unprecedented resolution, high sensitivity, ultrahigh accuracy, broad bandwidth, and ultrafast data updating rate in the fields of molecular spectroscopy, optical metrology, as well as optical frequency synthesis. The recent progress in chip-based microcombs has promoted the on-chip dual-comb measuring systems to a new phase attributed to the large frequency spacing and broad spectrum. In this paper, we demonstrate proof-of-concept dual-comb generation with orthogonal polarization in a single microresonator through pumping both the transverse-electric (TE) and transverse-magnetic (TM) modes simultaneously. The two orthogonal polarized pumps are self-oscillating in a fiber ring cavity. The generated dual comb exhibits excellent stability due to the intrinsic feedback mechanism of the self-locked scheme. The repetition rate of the two orthogonal combs is slightly different because of the mode spacing difference between the TE and TM modes. Such orthogonal polarized dual-combs could be a new comb source for out-of-lab applications in the fields of integrated spectroscopy, ranging measurement, optical frequency synthesis, and microwave comb generation.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.6.000363

基金项目:National Natural Science Foundation of China (NSFC)10.13039/501100001809 (61475188, 61605151, 61635013, 61675231); Strategic Priority Research Program, Chinese Academy of Sciences (CAS)10.13039/501100002367 (XDB24030600).

收稿日期:2017-12-26

录用日期:2018-02-08

网络出版日期:2018-02-09

作者单位    点击查看

Weiqiang Wang:State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, Chinae-mail: wwq@opt.ac.cn
Wenfu Zhang:State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, Chinae-mail: wfuzhang@opt.ac.cn
Zhizhou Lu:State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, China
Sai T. Chu:Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China
Brent E. Little:State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, China
Qinghua Yang:School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
Lei Wang:State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, China
Wei Zhao:State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, China

联系人作者:Weiqiang Wang(wwq@opt.ac.cn); Wenfu Zhang(wfuzhang@opt.ac.cn);

【1】S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. H nsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84 , 5102–5105 (2000).

【2】T. Udem, R. Holzwarth, and T. W. H nsch, “Optical frequency metrology,” Nature 416 , 233–237 (2002).

【3】R. Holzwarth, T. Udem, T. W. H nsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85 , 2264–2267 (2000).

【4】D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288 , 635–640 (2000).

【5】A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, “On-chip dual comb source for spectroscopy,” arXiv:1611.07673 (2016).

【6】T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, “Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy,” Optica 3 , 748–753 (2016).

【7】Z. Zhang, C. Gu, J. Sun, C. Wang, T. Gardiner, and D. T. Reid, “Asynchronous midinfrared ultrafast optical parametric oscillator for dual-comb spectroscopy,” Opt. Lett. 37 , 187–189 (2012).

【8】M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354 , 600–603 (2016).

【9】M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, and A. L. Gaeta, “Silicon-chip-based mid-infrared dual-comb spectroscopy,” arXiv:1610.01121v2 (2017).

【10】V. Ataie, P. P. Kuo, A. Wiberg, Z. Tong, C. Huynh, N. Alic, and S. Radic, “Ultrafast absolute ranging by coherent parametric comb,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (2013), paper OTh3D.2.

【11】P. Trocha, D. Ganin, M. Karpov, M. H. P. Pfeiffer, A. Kordts, J. Krockenberger, S. Wolf, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” arXiv 1707.05969v2 (2017).

【12】M.-G. Suh, and K. Vahala, “Soliton microcomb range measurement,” Science 359 , 884–887 (2018).

【13】I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3 , 414–426 (2016).

【14】M. A. R. Reber, Y. Chen, and T. K. Allison, “Cavity-enhanced ultrafast spectroscopy: ultrafast meets ultrasensitive,” Optica 3 , 311–317 (2016).

【15】P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonator-based solitons for massively parallel coherent optical communications,” Nature 546 , 274–279 (2017).

【16】S. B. Papp, K. Beha, P. DelHaye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “A microresonator frequency comb optical clock,” Optica 1 , 10–14 (2014).

【17】J. Li, H. Lee, T. Chen, and K. J. Vahala, “Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs,” Phys. Rev. Lett. 109 , 233901 (2012).

【18】Q. F. Yang, X. Yi, K. Y. Yang, and K. Vahala, “Counter-propagating solitons in microresonators,” Nat. Photonics 11 , 560–564 (2017).

【19】C. Joshi, A. Klenner, Y. Okawachi, M. Yu, K. Luke, X. Ji, M. Lipson, and A. L. Gaeta, “Counter-rotating cavity solitons in a silicon nitride microresonator,” Opt. Lett. 43 , 547–550 (2018).

【20】X. Zhao, J. M. Silver, L. Del Bino, and P. Del’Haye, “Dual comb generation in a single microresonator,” in Conference on Lasers and Electro-Optics , OSA Technical Digest (online) (Optical Society of America, 2017), paper STh3L.4.

【21】C. Bao, P. Liao, A. Kordts, L. Zhang, A. Matsko, M. Karpov, M. H. P. Pfeiffer, G. Xie, Y. Cao, Y. Yan, A. Almaiman, Z. Zhao, A. Mohajerin-Ariaei, A. Fallahpour, F. Alishahi, M. Tur, L. Maleki, T. J. Kippenberg, and A. E. Willner, “Orthogonally polarized Kerr frequency combs,” arXiv: 1705.05045v2 (2017).

【22】W. Wang, S. T. Chu, B. E. Little, A. Pasquazi, Y. Wang, L. Wang, W. Zhang, L. Wang, X. Hu, G. Wang, H. Hu, Y. Su, F. Li, Y. Liu, and W. Zhao, “Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing,” Sci. Rep. 6 , 28501 (2016).

【23】A. Pasquazi, L. Caspani, M. Peccianti, M. Clerici, M. Ferrera, L. Razzari, D. Duchesne, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip,” Opt. Express 21 , 13333–13341 (2013).

【24】X. Hu, W. Wang, L. Wang, W. Zhang, Y. Wang, and W. Zhao, “Numerical simulation and temporal characterization of dual-pumped microring- resonator-based optical frequency combs,” Photon. Res. 5 , 207–211 (2017).

【25】J. Li, H. Lee, K. Y. Yang, and K. J. Vahala, “Sideband spectroscopy and dispersion measurement in microcavities,” Opt. Express 20 , 26337–26344 (2012).

【26】T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8 , 145–152 (2014).

【27】M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3 , 765–766 (2012).

【28】E. Yoshida, and M. Nakazawa, “Low-threshold 115-GHz continuous-wave modulational-instability erbium-doped fiber laser,” Opt. Lett. 22 , 1409–1411 (1997).

【29】W. Wang, W. Zhang, S. T. Chu, B. E. Little, Q. Yang, L. Wang, X. Hu, L. Wang, G. Wang, Y. Wang, and W. Zhao, “Repetition rate multiplication pulsed laser source based on a microring resonator,” ACS Photon. 4 , 1677–1683 (2017).

【30】J. Ma, X. Jiang, and M. Xiao, “Kerr frequency combs in large-size, ultra-high-Q toroid microcavities with low repetition rates,” Photon. Res. 5 , B54–B58 (2017).

【31】P. Del’Haye, T. Herr, E. Gavartin, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Octave spanning tunable frequency comb from a microresonator,” Phys. Rev. Lett. 107 , 063901 (2011).

【32】S. B. Papp, P. Del’Haye, and S. A. Diddams, “Mechanical control of a microrod-resonator optical frequency comb,” Phys. Rev. X 3 , 031003 (2012).

【33】I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett. 34 , 878–880 (2009).

【34】D. C. Cole, E. S. Lamb, P. Del’Haye, S. A. Diddams, and S. B. Papp, “Soliton crystals in Kerr resonators,” Nat. Photonics 11 , 671–676 (2017).

引用该论文

Weiqiang Wang, Wenfu Zhang, Zhizhou Lu, Sai T. Chu, Brent E. Little, Qinghua Yang, Lei Wang, and Wei Zhao, "Self-locked orthogonal polarized dual comb in a microresonator," Photonics Research 6(5), 363 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF