首页 > 论文 > 光学学报 > 38卷 > 5期(pp:515005--1)

一种多视觉测量组网规划策略

Planning Strategy for Multi-Visual Measurement Networking

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对大尺寸三维形貌测量中高覆盖率与高精度的要求,提出了一种兼顾测量覆盖率和三维不确定度的智能组网规划方法。结合视觉测量要求,建立了视觉测量网络的离散化几何模型,确定了组网规划的决策变量,给出了视觉测量网络覆盖率和目标点三维不确定度两个概念。通过分析多种摄像机位姿约束条件,应用多目标遗传算法对组网决策变量进行全局性搜索,最终实现了多视觉的精确组网。对螺旋桨主体结构模型进行了仿真,结果表明测量网络覆盖率可以达到99.72%,三维不确定度可以收敛至0.0326 mm。通过单视觉多站式测量实验,验证了该策略的有效性和可行性。

Abstract

In order to meet the requirements of high coverage rate and high precision in large-size three-dimensional profile measurement, an intelligent network planning method considering the measurement coverage rate and three-dimensional uncertainty is proposed. Combined with the requirements of the visual measurement, the discretization geometry model of visual measurement network is determined, the decision variables of network planning are established, and two concepts of the visual measurement network coverage rate and the three-dimensional uncertainty of the target are also given. The multi-visual network is realized accurately by the analysis of several constraint conditions of camera position and globally searching on decision variables through multi-objective genetic algorithm. Simulation of the propeller main structural model is conducted. It is concluded that the coverage rate of measurement network can reach 99.72%, and the three-dimensional uncertainty can converge to 0.0326 mm. The effectiveness and feasibility of the strategy are verified through single vision multi-station measurement experiment.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TH741

DOI:10.3788/aos201838.0515005

所属栏目:机器视觉

基金项目:国家自然科学基金(51675142)

收稿日期:2017-08-30

修改稿日期:2017-12-14

网络出版日期:--

作者单位    点击查看

乔玉晶:哈尔滨理工大学机械动力工程学院, 黑龙江 哈尔滨 150080
谭世征:哈尔滨理工大学机械动力工程学院, 黑龙江 哈尔滨 150080
姜金刚:哈尔滨理工大学机器人技术及工程应用研究中心, 黑龙江 哈尔滨 150080

联系人作者:乔玉晶(qiaoy.j@hrbust.edu.cn)

备注:乔玉晶(1972-),女,博士,教授,硕士生导师,主要从事机器视觉等方面的研究。E-mail: qiaoy.j@hrbust.edu.cn

【1】Deng H, Xie J, Meng G Y, et al. Repeat positioning accuracy measurement technology based on machine vision[J]. Electronic Measurement Technology, 2014, 37(12): 45-48.
邓辉, 谢俊, 孟广月, 等. 基于机器视觉的重复定位精度测量技术[J]. 电子测量技术, 2014, 37(12): 45-48.

【2】Li W, Dong M L, Sun P, et al. Relative orientation method for large-scale photogrammetry with local parameter optimization[J]. Chinese Journal of Scientific Instrument, 2014, 35(9): 2053-2060.
李巍, 董明利, 孙鹏, 等. 大尺寸摄影测量局部参数优化相对定向方法[J]. 仪器仪表学报, 2014, 35(9): 2053-2060.

【3】Olague G, Mohr R. Optimal camera placement for accurate reconstruction[J]. Pattern Recognition, 2002, 35(4): 927-944.

【4】Wu M, Zhang X D, Duan W C, et al. Geometry splicing and measurement of wide range image in mobile measurement system[J]. Journal of Geomatics Science and Technology, 2016, 33(4): 415-420.
乌萌, 张晓东, 段渭超, 等. 移动测量系统宽幅影响的集合拼接与量测[J]. 测绘科学技术学报, 2016, 33(4): 415-420.

【5】Wang X J, Wang J, Dong M L, et al. Research on camera planning based on multiple constraints and genetic algorithm[J]. Tool Engineering, 2008, 42(2): 64-67.
王学娟, 王君, 董明利, 等. 基于多约束条件和遗传算法的摄像机网络规划研究[J]. 工具技术, 2008, 42(2): 64-67.

【6】Yuan Y, Zhang X H, Zhu Z K, et al. Deformation measurement of large-scale wind turbine blades using videometrics[J]. Journal of Computer Applications, 2012, 32(S1): 114-117.
苑云, 张小虎, 朱肇昆, 等. 大型风力发电叶片变形的摄像测量方法研究[J]. 计算机应用, 2012, 32(S1): 114-117.

【7】Chen J Y, Dong M L, Wang J, et al. Photogrammetric network design for large-scale trough concentrator surface measurement[J]. Renewable Energy Resources, 2016, 34(3): 353-359.
陈佳毅, 董明利, 王君, 等. 大型槽式聚光器面形摄影测量网络规划方法研究[J]. 可再生能源, 2016, 34(3): 353-359.

【8】Qiao Y J, Wang H R, Zhao Y J. Study on binocular vision measurement network layout for large curved surface parts[J]. Chinese Journal of Scientific Instrument, 2015, 36(4): 913-918.
乔玉晶, 王浩然, 赵燕江. 大尺寸曲面零件的双目视觉测量网络规划研究[J]. 仪器仪表学报, 2015, 36(4): 913-918.

【9】Yang Y, Li C, Miu W P, et al. Global optimal design of wind turbines blade based on multi-object genetic algorithm[J]. Journal of Mechanical Engineering, 2015, 51(14): 192-198.
杨阳, 李春, 缪维跑, 等. 基于多目标遗传算法的风力机叶片全局优化设计[J]. 机械工程学报, 2015, 51(14): 192-198.

【10】Liang S T, Yang J F, Xue B. A new phase diversity wave-front error sensing method based on genetic algorithm[J]. Acta Optica Sinica, 2010, 30(4): 1015-1019.
梁士通, 杨建峰, 薛彬. 基于遗传算法的改进相位差法波前误差传感器技术研究[J]. 光学学报, 2010, 30(4): 1015-1019.

【11】Pan Y Y, Guo J, Zhang L Y, et al. Optimal embattling method based on adaptive genetic algorithm[J]. Foreign Electronic Measurement Technology, 2013, 32(5): 62-64.
潘烨炀, 郭洁, 张林颖, 等. 基于自适应遗传算法的优化布站方法研究[J]. 国外电子测量技术, 2013, 32(5): 62-64.

【12】Tang Y H, Wu Q Y, Chen X Y, et al. Optimization design of the meridian line of progressive addition lenses based on genetic algorithm[J]. Acta Optica Sinica, 2014, 34(9): 0922005.
唐运海, 吴泉英, 陈晓翌, 等. 基于遗传算法的渐进多焦点镜片子午线优化设计[J]. 光学学报, 2014, 34(9): 0922005.

【13】Yang J, Zhao H Y. The research of floating-point coding improved genetic algorithm flatness error evaluation[J]. Optics and Precision Engineering, 2017, 25(3): 706-711.
杨健, 赵宏宇. 浮点数编码改进遗传算法在平面度误差评定中的研究[J]. 光学 精密工程, 2017, 25(3): 706-711.

【14】Creaco E, Pezzinga G. Embedding linear programming in multi objective genetic algorithms for reducing the size of the search space with application to leakage minimization in water distribution networks[J]. Environmental Modelling & Software, 2015, 69(C): 308-318.

【15】Yang C X, Li S K, Wang X Z. Pixelated source mask optimization based on multi chromosome genetic algorithm[J]. Acta Optica Sinica, 2016, 36(8): 0811001.
杨朝兴, 李思坤, 王向朝. 基于多染色体遗传算法的像素化光源掩模优化方法[J]. 光学学报, 2016, 36(8): 0811001.

【16】Gao H, Xue L Y. Back propagation neural network based on improved genetic algorithm fitting LED spectral model[J]. Laser & Optoelectronics Progress, 2017, 54(7): 072302.
高航, 薛凌云. 基于改进遗传算法的反向传播神经网络拟合LED光谱模型[J]. 激光与光电子学进展, 2017, 54(7): 072302.

【17】Yang G T, Dong R F, Wu H L, et al. Viewpoint optimization using genetic algorithm for flying robot inspection of electricity transmission tower equipment[J]. Chinese Journal of Electronics, 2014, 23(2): 426-431.

引用该论文

Qiao Yujing,Tan Shizheng,Jiang Jingang. Planning Strategy for Multi-Visual Measurement Networking[J]. Acta Optica Sinica, 2018, 38(5): 0515005

乔玉晶,谭世征,姜金刚. 一种多视觉测量组网规划策略[J]. 光学学报, 2018, 38(5): 0515005

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF