首页 > 论文 > 光学学报 > 38卷 > 5期(pp:511001--1)

双通道剪切干涉高光谱成像方法的信噪比分析

Signal-to-Noise Ratio Analysis of Dual-Channel Shearing Interferometry Hyperspectral Imaging Method

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种基于双通道剪切干涉的高光谱成像方法,并对其进行了信噪比(SNR)分析。介绍了干涉光谱成像系统的光谱复原SNR,对双矩形剪切干涉原理及双通道差分探测SNR进行了论述及仿真。搭建了实验装置,对实际场景目标进行了光谱成像SNR对比实验,获得了双通道差分探测系统的光谱探测SNR,并与非差分探测系统SNR进行了对比分析。结果表明所提差分干涉高光谱成像系统的光谱SNR为单通道系统的2倍。

Abstract

A hyperspectral imaging method based on dual-channel shearing interferometry is proposed and its signal-to-noise ratio (SNR) is analyzed. The spectral restoration SNR of interferometry spectral imaging system is introduced. The principle of dual-rectangle shearing interferometry and SNR of dual-channel differential detection are discussed and simulated. The experimental apparatus is built, and the SNR contrast experiment of the actual scene target is carried out. The spectral detection SNR of dual-channel differential detection system is obtained, which is compared and analyzed with SNR of non-differential detection system. Results show that the spectral SNR of the proposed differential interferometry hyperspectral imaging system is 2 times as that of the single-channel system.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O433

DOI:10.3788/aos201838.0511001

所属栏目:成像系统

基金项目:国家自然科学基金(61475072)、国家重大科学仪器设备开发专项(2013YQ150829)、中央高校基本科研业务费专项(30916014112-010)

收稿日期:2017-09-05

修改稿日期:2017-11-18

网络出版日期:--

作者单位    点击查看

刘成淼:南京理工大学电子工程与光电技术学院, 江苏 南京 210094南京理工大学先进固体激光工业和信息化部重点实验室, 江苏 南京 210094
李建欣:南京理工大学电子工程与光电技术学院, 江苏 南京 210094南京理工大学先进固体激光工业和信息化部重点实验室, 江苏 南京 210094
朱日宏:南京理工大学电子工程与光电技术学院, 江苏 南京 210094南京理工大学先进固体激光工业和信息化部重点实验室, 江苏 南京 210094
崔向群:南京理工大学电子工程与光电技术学院, 江苏 南京 210094中国科学院国家天文台南京天文光学技术研究所, 江苏 南京 210042

联系人作者:李建欣(ljx@vip.163.com)

备注:刘成淼(1989—),男,博士研究生,主要从事成像光谱偏振技术方面的研究。E-mail: liuchengmiao10@aliyun.com

【1】Malik Z, Cabib D, Buckwald R A, et al. A novel spectral imaging system combining spectroscopy with imaging applications for biology[C]. Proceedings of SPIE, 1995, 2329: 180-184.

【2】Sellar R G, Boreman G D. Comparison of relative signal-to-noise ratios of different classes of imaging spectrometer[J]. Applied Optics, 2005, 44(9): 1614-1624.

【3】Korb A R, Dybwad P, Wadsworth W, et al. Portable Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity[J]. Applied Optics, 1996, 35(10): 1679-1692.

【4】Liu C M, Li J X, Zhu R H, et al. Large field-of-view Fourier transform imaging spectrometer using dual-channel stitching[J]. Optics Express, 2016, 24(25): 28473-28490.

【5】Goetz A F, Vane G, Solomon J E, et al. Imaging spectrometry for earth remote sensing[J]. Science, 1985, 228(4704): 1147-1153.

【6】Diner D J, Chipman R A, Beaudry N A, et al. An integrated multiangle, multispectral, and polarimetric imaging concept for aerosol remote sensing from space[C]. Proceedings of SPIE, 2005, 5659: 88-96.

【7】Stenflo J O, Twerenbold D, Harvey J W, et al. Coherent scattering in the solar spectrum: survey of linear polarization in the range 4200-9950 [J]. Astronomy & Astrophysics Supplement Series, 1983, 54: 505-514.

【8】Gurjar R S, Backman V, Perelman L T, et al. Imaging human epithelial properties with polarized light-scattering spectroscopy[J]. Nature Medicine, 2001, 7(11): 1245-1248.

【9】Lucke R L, Corson M, McGlothlin N R, et al. Hyperspectral imager for the coastal ocean: instrument description and first images[J]. Applied Optics, 2011, 50(11): 1501-1516.

【10】Lucey P G, Horton K, Williams T, et al. SMIFTS: a cryogenically-cooled spatially-modulated imaging infrared interferometer spectrometer[C]. Proceedings of SPIE, 1993, 1937: 130-141.

【11】Meng X, Li J X, Xu T T, et al. High throughput full Stokes Fourier transform imaging spectropolarimetry[J]. Optics Express, 2013, 21(26): 32071-32085.

【12】Li J X, Meng X, Zhou W, et al. Image plane interferometric hyperspectral imaging based on reimaging[J]. Acta Optica Sinica, 2012, 32(12): 1230001.
李建欣, 孟鑫, 周伟, 等. 基于二次成像的像面干涉高光谱成像方法[J]. 光学学报, 2012, 32(12): 1230001.

【13】Wolfe W L. Introduction to imaging spectrometers[M]. Bellingham: SPIE Press, 1997.

【14】Schowengerdt R A. Remote sensing: models and methods for image processing[M]. Salt Lake City: Academic Press, 2006.

【15】Ferrec Y, Ayari-Matallah N, Chavel P, et al. Noise sources in imaging static Fourier transform spectrometers[J]. Optical Engineering, 2012, 51(11): 1716-1726.

【16】Fu Q, Xiang L B, Jing J J. System signal-to-noise ratio analysis based on imaging chain model in multispectral remote sensing[J]. Acta Optica Sinica, 2012, 32(2): 0211001.
付强, 相里斌, 景娟娟. 基于多光谱遥感成像链模型的系统信噪比分析[J]. 光学学报, 2012, 32(2): 0211001.

【17】Luo H Y, Xiong W, Shi H L, et al. Study for signal-to-noise ratio of spatial heterodyne spectrometer[J]. Acta Optica Sinica, 2017, 37(6): 0612001.
罗海燕, 熊伟, 施海亮, 等. 空间外差干涉光谱仪信噪比研究[J]. 光学学报, 2017, 37(6): 0612001.

【18】Liu C M, Li J X, Zhu R H, et al. Interferometric imaging spectropolarimeter using dual-channel lateral shearing beam splitter[J]. Acta Optica Sinica, 2017, 37(10): 1011002.
刘成淼, 李建欣, 朱日宏, 等. 基于双通道剪切干涉的高光谱偏振成像方法[J]. 光学学报, 2017, 37(10): 1011002.

【19】Fujimoto N, Takahashi Y, Moriyama T, et al. Evaluation of spot Hrv image data received in Japan[C]∥ 12th Canadian Symposium on Remote Sensing, International Geoscience and Remote Sensing Symposium, July 10-14, 1989, Vancouver, Canada, Canada, IEEE, 2: 463-466.

【20】Gao B C. An operational method for estimating signal to noise ratios from data acquired with imaging spectrometers[J]. Remote Sensing of Environment, 1993, 43(1): 23-33.

【21】Curran P J, Dungan J L. Estimation of signal-to-noise: a new procedure applied to AVIRIS data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1989, 27(5): 620-628.

【22】Roger R E, Arnold J F. Reliably estimating the noise in AVIRIS hyperspectral images[J]. International Journal of Remote Sensing, 1996, 17(10): 1951-1962.

【23】Chen Q, Yang J F, Qiao W D, et al. Analysis for signal-to-noise ratio of large aperture static imaging spectroscopy[J]. Acta Photonica Sinica, 2007, 36(10): 1889-1892.
陈琦, 杨建峰, 乔卫东, 等. 大孔径静态干涉成像光谱仪的信噪比分析[J]. 光子学报, 2007, 36(10): 1889-1892.

【24】Bennett C L, Carter M R, Fields D J. Hyperspectral imaging in the infrared using LIFTIRS[C]. Proceedings of SPIE, 1995, 2552: 274-283.

【25】Jin X Z, Xiang Y, Yu B X. Analysis for signal-to-noise ratio of imaging Fourier transform spectrometer[J]. Journal of Remote Sensing, 2000, 4(3): 194-196.
金锡哲, 向阳, 禹秉熙. 成像干涉光谱仪信噪比分析[J]. 遥感学报, 2000, 4(3): 194-196.

【26】Pritt A T, Kupferman P N, Young S J, et al. Imaging LWIR spectrometers for remote sensing applications[C]. Proceedings of SPIE, 1997, 3063: 138-149.

【27】Zhang C M, Huang W J, Zhao B C. Analysis and evaluation on the noise of novel polarization interference imaging spectrometer[J]. Acta Physica Sinica, 2010, 59(8): 5479-5486.
张淳民, 黃伟健, 赵葆常. 新型偏振干涉成像光谱仪噪声分析与评价[J]. 物理学报, 2010, 59(8): 5479-5486.

【28】Wang S, Xiangli B, Li L B, et al. Research of spectrum signal-to-noise ratio of large aperture static imaging spectrometer[J]. Spectroscopy and Spectral Analysis, 2014, 34(3): 851-856.
王爽, 相里斌, 李立波, 等. 大孔径静态干涉成像光谱仪光谱信噪比研究[J]. 光谱学与光谱分析, 2014, 34(3): 851-856.

【29】Janesick J R. Scientific charge-coupled devices[M]. Bellingham: SPIE Press, 2001.

【30】Wang S. Research on thesignal-to-noise ratio of large aperture static imaging spectrometer[D]. Xi’an: Xi’an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2013.
王爽. 大孔径静态干涉光谱成像仪信噪比研究[D]. 西安: 中国科学院西安光学精密机械研究所, 2013.

【31】Wang Z H, Zhang G Y. Physics basic of photons[M]. Beijing: National Defense Industry Press, 1998.
王忠和, 张光寅. 光子学物理基础[M]. 北京: 国防工业出版社, 1998.

引用该论文

Liu Chengmiao,Li Jianxin,Zhu Rihong,Cui Xiangqun. Signal-to-Noise Ratio Analysis of Dual-Channel Shearing Interferometry Hyperspectral Imaging Method[J]. Acta Optica Sinica, 2018, 38(5): 0511001

刘成淼,李建欣,朱日宏,崔向群. 双通道剪切干涉高光谱成像方法的信噪比分析[J]. 光学学报, 2018, 38(5): 0511001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF