首页 > 论文 > 光学学报 > 38卷 > 5期(pp:510001--1)

基于引导滤波与改进PCNN的多聚焦图像融合算法

Multi-Focus Image Fusion Based on Guided Filtering and Improved PCNN

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对多聚焦图像融合中目标物边缘处产生虚影的问题,提出一种基于引导滤波与改进脉冲耦合神经网络(PCNN)的多聚焦图像融合算法。该算法利用引导滤波器对源图像进行多尺度边缘保持分解,对分解得到的基本图像和细节图像采用不同的引导滤波加权融合策略进行初步融合;将初步融合图作为外部输入激励刺激改进的PCNN模型;根据融合权重图对多幅源图像进行融合,获得最终的融合图像。实验结果表明,与传统融合算法相比,本文方法较好地保留了源图像的边缘、区域边界以及纹理等细节信息,避免了目标物边缘处产生虚影,提高了融合图像的质量。

Abstract

To solve the problem that multi-focus image fusion results in virtual shadow at the target object edge, a multi-focus image fusion algorithm is proposed based on the guided filtering and improved pulse coupled neural network (PCNN). The source image is decomposed by a guided filter with the multi-scale edge-preserving decomposition, and the preliminary fusion, and the obtained basic and detail images are fused preliminarily by different guided filtering weighted fusion strategies. Preliminary fusion image is used as external input excitation to stimulate the improved PCNN model. The source images are according to the fusion weight map to obtain the final fusion image. Experimental results show that, compared with traditional fusion algorithms, the detail information of edge, region boundary and texture of source images are preserved by the proposed algorithm, which avoids virtual shadow at target object edge, and improves fusion image quality.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/aos201838.0510001

所属栏目:图像处理

基金项目:国家自然科学基金(61562057,61162016,61462059)、长江学者和创新团队发展计划(IRT_16R36)、兰州交通大学青年科学基金(2014006)

收稿日期:2017-09-27

修改稿日期:2017-11-28

网络出版日期:--

作者单位    点击查看

杨艳春:兰州交通大学电子与信息工程学院, 甘肃 兰州 730070
李娇:兰州交通大学电子与信息工程学院, 甘肃 兰州 730070
党建武:兰州交通大学电子与信息工程学院, 甘肃 兰州 730070
王阳萍:兰州交通大学电子与信息工程学院, 甘肃 兰州 730070

联系人作者:杨艳春(yangyanchun102@sina.com)

备注:杨艳春(1979-),女,博士,副教授,硕士生导师,主要从事图像配准与融合方面的研究。E-mail: yangyanchun102@sina.com

【1】Das S, Zhang Y. Color night vision for navigation and surveillance[J]. Transportation Research Record: Journal of the Transportation Research Board, 2000, 1708: 40-46.

【2】Wu D P, Bi D Y, He L Y, et al. A fusion algorithm of infrared and visible image based on NSSCT[J]. Acta Optica Sinica, 2017, 37(7): 0710003.
吴冬鹏, 毕笃彦, 何林远, 等. 基于NSSCT的红外与可见光图像融合[J]. 光学学报, 2017, 37(7): 0710003.

【3】Luo X Q, Zhang Z C, Zhang C Y, et al. Multi-focus image fusion using HOSVD and edge intensity[J]. Journal of Visual Communication and Image Representation, 2017, 45: 46-61.

【4】Liu Y, Chen X, Peng H, et al. Multi-focus image fusion with a deep convolutional neural network[J]. Information Fusion, 2017, 36: 191-207.

【5】Cao C H, Zhang J H, Li L F. Multi-focus image fusion based on twin-generation differential evolution and adaptive block mechanism[J]. Computer Science, 2016, 43(7): 67-72.
曹春红, 张建华, 李林峰. 基于双子代差分演化和自适应分块机制的多聚焦图像融合算法[J]. 计算机科学, 2016, 43(7): 67-72.

【6】Guo M, Wang S M. Image fusion based on region and directional variance weighted entropy[J]. Journal of Systems Engineering and Electronics, 2013, 35(4): 720-724.
郭明, 王书满. 基于区域和方向方差加权信息熵的图像融合[J]. 系统工程与电子技术, 2013, 35(4): 720-724.

【7】Eckhorn R, Reitboeck H J, Arndt M, et al. Feature linking via synchronization among distributed assemblies: simulations of results from cat cortex[J]. Neural Computation, 1990, 2(3): 293-307.

【8】Li M L, Li Y J, Wang H M, et al. Fusion algorithm of infrared and visible images based on NSCT and PCNN[J]. Opto-Electronic Engineering, 2010, 37(6): 90-95.
李美丽, 李言俊, 王红梅, 等. 基于NSCT和PCNN的红外与可见光图像融合方法[J]. 光电工程, 2010, 37(6): 90-95.

【9】Wang H P, Liu Z Q, Fang X, et al. Method for image fusion based on adaptive pulse coupled neural network in curvelet domain[J]. Journal of Optoelectronics·Laser, 2016, 27(4): 429-436.
王昊鹏, 刘泽乾, 方兴, 等. Curvelet域自适应脉冲耦合神经网络的图像融合方法[J]. 光电子·激光, 2016, 27(4): 429-436.

【10】Zheng W, Zhao C C, Hao D M. Thyroid image fusion based on NSST and improved PCNN[J]. Opto-Electronic Engineering, 2016, 43(10): 42-48.
郑伟, 赵成晨, 郝冬梅. NSST与改进PCNN相结合的甲状腺图像融合[J]. 光电工程, 2016, 43(10): 42-48.

【11】He K M, Sun J, Tang X O. Guided image filter[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 5(6): 1397-1409.

【12】Li S T, Kang X D, Hu J W. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864-2875.

【13】Zhu D R, Xu L, Wang F B, et al. Multi-focus image fusion algorithm based on FFST and the guided filter[J]. Laser & Optoelectronics Progress, 2018, 55(1): 011001.
朱达荣, 许露, 汪方斌, 等. 基于FFST与引导滤波的多聚焦图像融合算法[J]. 激光与光电子学进展, 2018, 55(1): 011001.

【14】Jiang Z T, Wu H, Zhou X L. Infrared and visible image fusion algorithm based on improved guided filtering and DCSCM[J]. Acta Optica Sinica, 2018, 38(2): 0210002.
江泽涛, 吴辉, 周哓玲. 基于改进引导滤波和DCSCM的红外与可见光图像融合算法[J]. 光学学报, 2018, 38(2): 0210002.

【15】Wang Z B, Wang S, Zhu Y. Multi-focus image fusion based on the improved PCNN and guided filter[J]. Neural Processing Letters, 2017, 45(1): 75-94.

【16】Yang H, Wu X T, He B G, et al. Image fusion based on multi-scale guided filter[J]. Journal of Optoelectronics·Laser, 2015, 26(1): 170-176.
杨航, 吴笑天, 贺柏根, 等. 基于多尺度导引滤波的图像融合方法[J]. 光电子·激光, 2015, 26(1): 170-176.

【17】Xydeas C S, Petrovic V. Objective image fusion performance measure[J]. Electronics Letters, 2000, 36(4): 308-309.

【18】Zheng Y F,Essock E A, Hansen B C, et al. A new metric based on extended spatial frequency and its application to DWT based fusion algorithms[J]. Information Fusion, 2007, 8(2): 177-192.

【19】Li S T, Yang B, Hu J W. Performance comparison of different multi-resolution transforms for image fusion [J]. Information Fusion, 2011, 12(2): 74-84.

【20】Miao Q G, Wang B S. A novel algorithm of multi-focus image fusion using adaptive PCNN[J]. Journal of Electronics & Information Technology, 2006, 28(3): 465-470.
苗启广, 王宝树. 一种自适应PCNN多聚焦图像融合新方法[J]. 电子与信息学报, 2006, 28(3): 465-470.

【21】Zhan K, Teng J C, Li Q Q, et al. A novel explicit multi-focus image fusion method[J]. Journal of Information Hiding and Multimedia Signal Processing, 2015, 6(3): 600-612.

引用该论文

Yang Yanchun,Li Jiao,Dang Jianwu,Wang Yangping. Multi-Focus Image Fusion Based on Guided Filtering and Improved PCNN[J]. Acta Optica Sinica, 2018, 38(5): 0510001

杨艳春,李娇,党建武,王阳萍. 基于引导滤波与改进PCNN的多聚焦图像融合算法[J]. 光学学报, 2018, 38(5): 0510001

被引情况

【1】李洪博,董岩,刘云清,赵馨,宋延嵩. 可提高相机动态范围的图像融合方法研究. 红外技术, 2018, 40(9): 887-892

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF