首页 > 论文 > 光学学报 > 38卷 > 5期(pp:514002--1)

自适应双光梳光谱原理分析与实现

Analysis and Realization of Adaptive Dual-Comb Spectroscopy

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用自适应双光梳光谱检测方法对乙炔(C2H2)气体在ν1+ν3吸收带部分的P支谱线进行测量,并通过与HITRAN相应数据库的对比,验证了该方法的准确性。从采样定理出发,分析了自适应主动补偿技术的工作机理,并讨论了其高阶信号和带宽的特性。使用非线性光纤对光梳进行200 nm范围的超连续谱展宽,拓展了其宽谱特性。时域信号单次采样时长为600 μs,光谱分辨率达1.09 GHz,光谱更新频率为180 Hz。自适应补偿技术有效解决了自然室温条件下梳齿快漂引起的光谱抖动问题。同时,光梳振荡源重复频率锁定后均方差抖动控制为7.01 MHz,锁定光梳振荡源的重复频率和反馈调节控制连续激光的中心频率,可有效抑制光梳梳齿的慢漂现象,使双光梳光谱测量系统的稳定运行时间由几分钟提升至半小时量级,增强了自适应双光梳系统的长期稳定性和实用性。

Abstract

In this paper, partial P branch lines in the ν1+ ν3 absorption band of the acetylene are measured by the adaptive dual-comb spectroscopy sampling technique. The validity of the method is verified by comparison of the measured results with the standard absorption lines in HITRAN database. The mechanism of adaptive sampling technique based on the sampling theorem is analyzed. High-order features and bandwidth characteristics of the adaptive sampling techniques are further discussed. In the experiment setup, 200 nm super continuums are generated in nonlinear fiber, and then the wide spectra are extended. Partial absorption lines of the acetylene are retrieved from a 600 μs pulse signal in time domain with 1.09 GHz spectral resolution at a refresh rate of 180 Hz. The fast instabilities between combs are well compensated by the adaptive sampling technique under a room temperature environment. Meanwhile, with a 7.01 MHz stabilization accuracy of repetition rates, we suppress slow drifts effectively by further stabilizing the repetition rates of combs and tuning the center frequency of continuous-wave lasers. In this way, the stable running time of the dual-comb adaptive sampling system is increased from only a few minutes to more than half an hour, and thus the long-term stability and practicability of adaptive dual-comb spectroscopy are enhanced.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O439

DOI:10.3788/aos201838.0514002

所属栏目:激光器与激光光学

基金项目:国家重大科学仪器设备开发专项(2012YQ150092)、国家自然科学基金(11704253,11434005, 11504235)、中国博士后基金(2015M581634)、上海市青年科技英才“扬帆计划”(17YF1413100)

收稿日期:2017-10-31

修改稿日期:2017-12-19

网络出版日期:--

作者单位    点击查看

杨力:上海理工大学光电信息与计算机工程学院, 上海 200093
沈旭玲:华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062中国科学院上海光学精密机械研究所强场激光物理国家重点实验室, 上海 201800
杨康文:上海理工大学光电信息与计算机工程学院, 上海 200093
郝强:上海理工大学光电信息与计算机工程学院, 上海 200093
曾和平:上海理工大学光电信息与计算机工程学院, 上海 200093华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062

联系人作者:沈旭玲(xlshen@lps.ecnu.edu.cn)

备注:杨力(1992-),男,硕士研究生,主要从事双光梳方面的研究。E-mail: yangli_usst@163.com

【1】Yang H L, Wei H Y, Li Y, et al. Technique progress of high-precision gas absorption spectroscopy with femtosecond optical frequency comb[J]. Spectroscopy and Spectral Analysis, 2014, 34(2): 335-339.
杨宏雷, 尉昊赟, 李岩, 等. 飞秒光学频率梳高精度气体吸收光谱技术进展[J]. 光谱学与光谱分析, 2014, 34(2): 335-339.

【2】Wu X J, Li Y, Wei H Y, et al. Femtosecond optical frequency combs for precision measurement applications[J]. Laser & Optoelectronics Progress, 2012, 49(3): 030001.
吴学健, 李岩, 尉昊赟, 等. 飞秒光学频率梳在精密测量中的应用[J]. 激光与光电子学进展, 2012, 49(3): 030001.

【3】Yi L, Yuan J, Qi X H, et al. A diode laser spectrometer at 634 nm and absolute frequency measurements using optical frequency comb[J]. Chinese Physics B, 2009, 18(4): 1409-1412.

【4】Meng F, Cao S Y, Cai Y, et al. Study of the femtosecond fiber comb and absolute optical frequency measurement[J]. Acta Physica Sinica, 2011, 60(10): 125-131.
孟飞, 曹士英, 蔡岳, 等. 光纤飞秒光学频率梳的研制及绝对光学频率测量[J]. 物理学报, 2011, 60(10): 125-131.

【5】Wang G C, Wei C H, Yan S H. Wavelength selection and non-ambiguity range analysis for optical-comb-referenced multi-wavelength absolute distance measurement[J]. Acta Optica Sinica, 2014, 34(4): 0412002.
王国超, 魏春华, 颜树华. 光梳多波长绝对测距的波长选择及非模糊度量程分析[J]. 光学学报, 2014, 34(4): 0412002.

【6】Wang G C, Yan S H, Yang J, et al. Theoretical modeling analysis for precise space ranging based on cross-correlation of femtosecond optical frequency comb[J]. Acta Optica Sinica, 2015, 35(4): 0412002.
王国超, 颜树华, 杨俊, 等. 基于飞秒光梳互相关的空间精密测距理论模型分析[J]. 光学学报, 2015, 35(4): 0412002.

【7】Wang G C, Tan L H, Yan S H, et al. Synchronous phase demodulation for real-time absolute distance measurement based on optical comb multi-wavelength interferometry[J]. Acta Optica Sinica, 2017, 37(1): 0112003.
王国超, 谭立龙, 颜树华, 等. 基于光梳多波长干涉实时绝对测距的同步相位解调[J]. 光学学报, 2017, 37(1): 0112003.

【8】Xu L M, Song Y J, Liang F, et al. All polarization maintaining fiber based dual-comb high precision absolute distance measurement system[J]. Acta Optica Sinica, 2015, 35(s2): s212001.
许立明, 宋有建, 梁飞, 等. 全保偏光纤化的双光梳高精度绝对测距系统[J]. 光学学报, 2015, 35(s2): s212001.

【9】Wu X J, Wei H Y, Zhang H Y, et al. Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb[J]. Applied Optics, 2013, 52(10): 2042-2048.

【10】Stenger J, Tamm C, Haverkamp N, et al. Absolute frequency measurement of the 435.5-nm 171Yb+-clock transition with a Kerr-lens mode-locked femtosecond laser[J]. Optics Letters, 2001, 26(20): 1589-1591.

【11】Udem T, Reichert J, Holzwarth R, et al. Accurate measurement of large optical frequency differences with a mode-locked laser[J]. Optics Letters, 1999, 24(13): 881-883.

【12】Ideguchi T, Poisson A, Guelachvili G, et al. Adaptive real-time dual-comb spectroscopy[J]. Nature Communications, 2014, 5(2): 3375.

【13】Scherer J J, Paul J B, O''Keefe A, et al. Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams[J]. Chemical Reviews, 1997, 97(1): 25-51.

【14】Ideguchi T, Poisson A, Guelachvili G, et al. Adaptive dual-comb spectroscopy in the green region[J]. Optics Letters, 2012, 37(23): 4847-4849.

【15】Roy J, Deschênes J D, Potvin S, et al. Continuous real-time correction and averaging for frequency comb interferometry[J]. Optics Express, 2012, 20(20): 21932-21939.

【16】Zhang Z W, Gardiner T, Reid D T. Mid-infrared dual-comb spectroscopy with an optical parametric oscillator[J]. Optics Letters, 2013, 38(16): 3148-3150.

【17】Schliesser A, Picqué N, Hnsch T W. Mid-infrared frequency combs[J]. Nature Photonics, 2012, 6(7): 440-449.

【18】Zhu F, Mohamed T, Strohaber J, et al. Real-time dual frequency comb spectroscopy in the near infrared[J]. Applied Physics Letters, 2013, 102(12): 121116.

【19】Yang H L, Wei H Y, Zhang H Y, et al. Performance estimation of dual-comb spectroscopy in different frequency-control schemes[J]. Applied Optics, 2016, 55(23): 6321-6330.

【20】Keilmann F, Gohle C, Holzwarth R. Time-domain mid-infrared frequency-comb spectrometer[J]. Optics Letters, 2004, 29(13): 1542-1544.

【21】Baumann E, Giorgetta F R, Swann W C, et al. Spectroscopy of the methane ν3 band with an accurate mid-infrared coherent dual-comb spectrometer[J]. Physical Review A. 2011, 84(6): 14717-14719.

【22】Yan M, Li W X, Yang K W, et al. High-power Yb-fiber comb with feed-forward control of nonlinear-polarization-rotation mode-locking and large-mode-area fiber amplification[J]. Optics Letters, 2012, 37(9): 1511-1513.

【23】Shen X L, Hao Q, Zeng H P. Self-tuning mode-locked fiber lasers based on prior collection of polarization settings[J]. IEEE Photonics Technology Letters, 2017, 29(20): 1719-1722.

引用该论文

Yang Li,Shen Xuling,Yang Kangwen,Hao Qiang,Zeng Heping. Analysis and Realization of Adaptive Dual-Comb Spectroscopy[J]. Acta Optica Sinica, 2018, 38(5): 0514002

杨力,沈旭玲,杨康文,郝强,曾和平. 自适应双光梳光谱原理分析与实现[J]. 光学学报, 2018, 38(5): 0514002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF