首页 > 论文 > 光学学报 > 38卷 > 5期(pp:505003--1)

电子束光刻-近场全息法制作平焦场光栅的误差分析及补偿方法

Errors Analysis of Flat-Field Gratings Fabricated by EBL-NFH and Errors Compensation

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

在激光等离子体诊断等领域中,以平焦场光栅为核心器件的软X射线光谱仪发挥着重要作用。利用电子束光刻-近场全息法制作的平焦场光栅兼具电子束光刻线密度变化灵活,以及全息光栅低杂散光、抑制高次谐波等的特点。采用光线追迹方法分析电子束光刻-近场全息法制作平焦场光栅的主要制作误差对其光谱成像特性的影响。结果表明:电子束光刻制备熔石英掩模和近场全息图形转移过程的制作误差均会导致谱线展宽;以目前应用较多的软X射线平焦场光栅(中心线密度为2400 line/mm、工作波段在0.8~6.0 nm)为例,当熔石英掩模在光栅矢量方向的长度为50 mm时,电子束光刻分区数目应保证在1500以上;熔石英掩模线密度偏差引入的谱线展宽可以通过调整近场全息制作参数来消除;确定了近场全息中的两个主要影响因素--熔石英掩模与光栅基底的间距和夹角;近场全息中各误差因素之间有相互补偿的效果,故除了尽可能消除制备过程中的每一种制作误差外,也可以通过优化不同误差之间的分配来降低制备误差。本研究对优化电子束直写掩模策略、降低掩模制作难度、设计和调整近场全息光路有重要帮助。

Abstract

Soft X-ray spectrographs based on flat-field diffraction gratings play important roles in the fields of laser plasma diagnostics, etc. The flat-field gratings fabricated by electron beam lithography-near field holography (EBL-NFH) integrate the advantages of both sides, including the flexibility and high accuracy of spatial distribution of groove density due to EBL, and low stray light and low high-order harmonics similar to those of holographic gratings. This paper simulates the effect of dominating fabrication errors during EBL and NFH on the spectral images of flat-field gratings based on ray tracing theory. The results indicate that the fabrication errors of EBL and NFH will broaden spectral lines and degrade spectral images. We take a typical soft X-ray flat-field grating with a central density of 2400 lines/mm ranging from 0.8 nm to 6.0 nm as an example, when the length of the fused silica mask is 50 mm (along the direction of grating vector), the segment number should not be less than 1500. And the broadening of spectral lines due to the groove density error of the fused silica mask during EBL can be compensated by adjusting the parameters of NFH, such as the spacing and angle between the fused silica mask and the photoresist-coated grating substrate. The dominating factors are spacing and angle between the fused silica mask and the photoresist-coated grating substrate. And during NFH, rather than removing every fabrication parameter errors, the spectral line broadening can be eliminated by optimizing relative values among different errors. The simulation results are helpful to optimize the EBL-writing strategy for the mask, reduce the complexity of mask fabrication, and design and adjust the light path of NFH.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O434

DOI:10.3788/aos201838.0505003

所属栏目:衍射与光栅

基金项目:中德科学基金研究交流中心资助中德合作研究项目(GZ983)

收稿日期:2017-10-26

修改稿日期:2017-12-05

网络出版日期:--

作者单位    点击查看

林达奎:中国科学技术大学国家同步辐射实验室, 安徽 合肥 230029
陈火耀:中国科学技术大学国家同步辐射实验室, 安徽 合肥 230029
刘正坤:中国科学技术大学国家同步辐射实验室, 安徽 合肥 230029
刘颖:中国科学技术大学国家同步辐射实验室, 安徽 合肥 230029

联系人作者:刘颖(liuychch@ustc.edu.cn)

备注:林达奎(1992-),男,博士研究生,主要从事近场全息和软X射线平焦场光栅方面的研究。E-mail: lindk@mail.ustc.edu.cn

【1】Li Y T, Zhang Q R, Gu Y Q, et al. Space-resolved study of neon-like titanium soft X-ray lasing[J]. Acta Physica Sinica, 1997, 46(6): 1103-1107.
李玉同, 张启仁, 谷渝秋, 等. 类氖钛软X射线激光空间发射区域研究[J]. 物理学报, 1997, 46(6): 1103-1107.

【2】Weller M E, Safronova A S, Clementson J, et al. Extreme ultraviolet spectroscopy and modeling of Cu on the SSPX Spheromak and laser plasma “Sparky”[J]. Review of Scientific Instruments, 2012, 83(10): 10E101.

【3】Masami T, Hideto Y, Michiyoshi T. Development of a sub-eV resolution soft-X-ray spectrometer for a transmission electron microscope[J]. Journal of Electron Microscopy, 2001, 50(2): 101-104.

【4】Imazono T, Koike M, Koeda M, et al. A multilayer grating with a novel layer structure for a flat-field spectrograph attached to transmission electron microscopes in energy region of 2-4 keV[C/OL]. (2017-05-17)[2017-10-26]. https: ∥www.osti.gov/biblio/22004041.

【5】Lepson J K, Beiersdorfer P, Clementson J, et al. EUV spectroscopy on NSTX[J]. Journal of Physics B, 2010, 43: 144018.

【6】Beiersdorfer P, Magee E W, Brown G V, et al. Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trap[J]. Review of Scientific Instruments, 2014, 85: 11E422.

【7】Shen Y C, Lyu B, Du X W, et al. Impurity emission behavior in the soft X-ray and extreme ultraviolet range on EAST[J]. Plasma Science and Technology, 2015, 17(3): 183-187.

【8】Shen Y C, Lyu B, Wang F D, et al. Observation of molybdenum emission from impurity-induced long-lived m=1 mode on the experimental advanced superconducting tokamak[J]. Chinese Physics Letters, 2016, 33(6): 065205.

【9】Liu S Y, Liu Z T, Wu J R, et al. Hyperspectral camera based on ghost imaging via sparsity constraints with application of flat-field grating[J]. Acta Optica Sinica, 2017, 37(5): 0511004.
刘盛盈, 刘震涛, 吴建荣, 等. 基于平场光栅的稀疏约束鬼成像高光谱相机[J]. 光学学报, 2017, 37(5): 0511004.

【10】Chowdhuri M B, Morita S, Goto M, et al. Spectroscopic comparison between 1200 grooves/mm ruled and holographic gratings of a flat-field spectrometer and its absolute sensitivity calibration using bremsstrahlung continuum[J]. Review of Scientific Instruments, 2007, 78(2): 023501.

【11】Chen H Y, Liu Z K, Liu Y, et al. Design of multi-area grating for soft X-ray flat-field spectrograph[J]. Applied Optics, 2015, 54(18): 5675-5679.

【12】Wang Q B, Liu Z K, Zheng Y C, et al. Alignment method for fabricating a parallel flat-field grating used in soft X-ray region[J]. Applied Optics, 2015, 54(18): 5782-5787.

【13】Namioka T, Koike M. Aspheric wave-front recording optics for holographic gratings[J]. Applied Optics, 1995, 34(13): 2180-2186.

【14】Koike M, Namioka T. Plane gratings for high-resolution grazing-incidence monochromatots: holographic grating versus mechanically ruled varied-line-spacing grating[J]. Applied Optics, 1997, 36(25): 6308-6318.

【15】Kley E B, Clausnitzer T. E-beam lithography and optical near field lithography: new prospects in fabrication of various grating structures[C]. SPIE, 2003, 5184: 115-125.

【16】Lin D K, Chen H Y, Kroker S, et al. Design of soft X-ray varied-line-spacing grating based on electron beam lithography-near field lithography[C]. SPIE, 2016, 10022: 100220S.

【17】Li Y F, Chen H Y, Kroker S, et al. Near-field holography enhanced with antireflection coatings: an improved method for fabricating diffraction gratings[J]. Chinese Optics Letters, 2016, 14(9): 090501.

【18】Zeitner U D, Oliva M, Fuchs F, et al. High performance diffraction gratings made by e-beam lithography[J]. Applied Physics A, 2012, 109(4): 789-796.

【19】Heusinger M, Banasch M, Zeitner U D. Rowland ghost suppression in high efficiency spectrometer gratings fabricated by e-beam lithography[J]. Optics Express, 2017, 25(6): 6182-6190.

【20】Gté V, Bernaud G, Veillas C, et al. Fast dynamic interferometric lithography for large submicrometric period diffraction gratings production[J]. Optical Engineering, 2013, 52(9): 091712.

【21】Wang Q B, Liu Z K, Chen H Y, et al. Design of parallel flat-field gratings in soft X-ray region[J]. Acta Optica Sinica, 2014, 34(8): 0805001.
王庆博, 刘正坤, 陈火耀, 等. 软X射线并联平场光栅的设计[J]. 光学学报, 2014, 34(8): 0805001.

【22】Kong P, Bayanheshig, Li W H, et al. Optimization of double-grating flat-field holographic concave grating spectrograph[J]. Acta Optica Sinica, 2011, 31(2): 0205001.
孔鹏, 巴音贺希格, 李文昊, 等. 双光栅平场全息凹面光栅光谱仪的优化设计[J]. 光学学报, 2011, 31(2): 0205001.

【23】Zhao X L, Bayanheshig, Li W H, et al. Integrated design to complement aberrations of spherical focusing mirrors and concave holographic gratings in spectrometers[J]. Acta Optica Sinica, 2016, 36(6): 0605002.
赵旭龙, 巴音贺希格, 李文昊, 等. 光谱仪中球面聚焦反射镜和凹面全息光栅像差互补的一体化设计[J]. 光学学报, 2016, 36(6): 0605002.

【24】Zhou Q, Zeng L J, Li L F. Numerical simulation and experimental demonstration of error compensation between recording structure and use structure of flat-field holographic concave gratings[J]. Spectroscopy and Spectral Analysis, 2008, 28(7): 1674-1678.
周倩, 曾理江, 李立峰. 平场全息凹面光栅制作结构与使用结构之间误差补偿作用的数值模拟与实验验证[J]. 光谱学与光谱分析, 2008, 28(7): 1674-1678.

【25】Pi D R, Huang Y S, Zhang D W, et al. Optimization of the flat-field holographic concave grating in wide spectral range[J]. Acta Physica Sinica, 2010, 59(2): 1009-1016.
皮道锐, 黄元申, 张大伟, 等. 宽光谱平像场全息凹面光栅的优化研究[J]. 物理学报, 2010, 59(2): 1009-1016.

【26】Kong P, Tang Y G, Bayanheshig, et al. Compensation effects between parameter errors of flat-field holographic concave gratings[J]. Acta Optica Sinica, 2011, 31(7): 0705001.
孔鹏, 唐玉国, 巴音贺希格, 等. 平场全息凹面光栅结构参量误差之间的补偿作用[J]. 光学学报, 2011, 31(7): 0705001.

【27】Chen H Y, Liu Z K, Wang Q B, et al. Effect of curve groove on the spectral resolution for soft X-ray holographic flat-field gratings[J]. Acta Physica Sinica, 2014, 63(23): 234203.
陈火耀, 刘正坤, 王庆博, 等. 软X射线全息平焦场光栅的条纹弯曲现象及其对光谱分辨率的影响[J]. 物理学报, 2014, 63(23): 234203.

【28】Dong Q L, Liu Y Q, Teng H, et al. Ray tracing method for the grazing incidence flat-field imaging soft X-ray spectrometer[J]. Chinese Physics B, 2014, 23(6): 065206.

【29】Chen H Y. Design and fabrication of soft X-ray holographic flat-field gratings[D]. Hefei: University of Science and Technology of China, 2015: 17-26.
陈火耀. 软X射线全息平焦场光栅的研制[D]. 合肥: 中国科学技术大学, 2015: 17-26.

【30】Moharam M G, Gaylord T K. Rigorous coupled-wave analysis of planar-grating diffraction[J]. Journal of the Optical Society of America, 1981, 71(7): 811-818.

【31】Zhang J M, Wu X J, Ma X H, et al. Design and optimization of transmission gratings for spectral beam combining technique[J]. Acta Optica Sinica, 2017, 37(10): 1005001.
张俊明, 吴肖杰, 马晓辉, 等. 用于光谱合束技术的透射光栅设计与优化[J]. 光学学报, 2017, 37(10): 1005001.

【32】Li X T, Yu H L, Qi X H, et al. 300 mm ruling engine producing gratings and echelles under interferometric control in China[J]. Applied Optics, 2015, 54(7): 1819-1826.

引用该论文

Lin Dakui,Chen Huoyao,Liu Zhengkun,Liu Ying. Errors Analysis of Flat-Field Gratings Fabricated by EBL-NFH and Errors Compensation[J]. Acta Optica Sinica, 2018, 38(5): 0505003

林达奎,陈火耀,刘正坤,刘颖. 电子束光刻-近场全息法制作平焦场光栅的误差分析及补偿方法[J]. 光学学报, 2018, 38(5): 0505003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF