首页 > 论文 > 激光与光电子学进展 > 55卷 > 5期(pp:50006--1)

垂直腔面发射半导体激光器的特性及其研究现状

Characteristics and Progress of Vertical-Cavity Surface-Emitting Semiconductor Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

与传统的边发射半导体激光器相比,垂直腔面发射激光器(VCSEL)具有光束质量好、阈值电流低、易于二维列阵集成和制造成本低廉等优点。近年来,以VCSEL为基础发展起来的电抽运和光抽运垂直外腔面发射激光器(VECSEL),在获得高的输出功率和光束质量的同时,可以通过在腔内插入光学元件,实现腔内倍频、波长可调谐和锁模等激光技术,在激光领域很有竞争力。本文介绍了面发射半导体激光器的结构、工作原理及性能优势,综述了其在高功率输出、可调谐技术、锁模技术等方面的研究现状与进展,探讨了该类型激光器的发展前景。

Abstract

Compared with the traditional edge emitting semiconductor lasers, the vertical cavity surface emitting laser (VCSEL) shows many advantages, such as good beam quality, low threshold current, easy fabrication in two-dimensional arrays and low cost. In recent years, the electrically pumped and optically pumped vertical external cavity surface emitting laser (VECSEL) developed on the basis of VCSEL is a very competitive light source in the laser field. It can realize intracavity frequency doubled, tunable wavelength and mode-locked lasers technology by inserting corresponding optical element within the cavity, and obtain high output power and beam quality. We introduce the structures, working principles and performance advantages of VCSEL and VECSEL. The research status and latest progress including high power, tunable operation, and mode-locking lasers are reviewed. The development prospect of VCSEL and VECSEL are discussed.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248

DOI:10.3788/lop55.050006

所属栏目:综述

基金项目:国家自然科学基金青年基金 (61505226)

收稿日期:2017-11-06

修改稿日期:2017-11-20

网络出版日期:--

作者单位    点击查看

李玉娇:中国科学院理化技术研究所中国科学院固体激光重点实验室, 北京 100190中国科学院大学, 北京 100049
宗楠:中国科学院理化技术研究所中国科学院固体激光重点实验室, 北京 100190
彭钦军:中国科学院理化技术研究所中国科学院固体激光重点实验室, 北京 100190

联系人作者:宗楠(zongnan@mail.ipc.ac.cn)

备注:李玉娇(1992—),女,博士研究生,主要从事全固态激光器方面的研究。E-mail: 1402578996@qq.com

【1】Hua L L, Yang Y. Characteristics and development of optically pumped vertical external cavity surface emitting lasers[J]. Material Review A: Review, 2013, 27(11): 64-69.
华玲玲, 杨阳. 光泵浦垂直外腔面发射激光器特性及研究进展[J]. 材料导报A: 综述篇, 2013, 27(11): 64-69.

【2】Soda H, Iga K, Kitahara C, et al. GaInAsP/InP surface emitting injection lasers[J]. Japanese Journal of Applied Physics, 1979, 18(12): 2329-2330.

【3】Zhou D L, Seurin J F, Xu G Y, et al. Progress on high-power, high-brightness VCSELs and applications[C]. SPIE, 2015, 9381: 93810B.

【4】Zhao P, Xu B, van Leeuwen R, et al. Compact 4.7 W, 18.3% wall-plug efficiency green laser based on an electrically pumped VECSEL using intracavity frequency doubling[J]. Optics Letters, 2014, 39(16): 4766-4768.

【5】Kuznetsov M, Hakimi F, Sprague R, et al. High power (>0.5 W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams[J]. IEEE Photonics Technology Letter, 1997, 9(8): 1063-1065.

【6】Okhotnikov O G. Chapter 1: VECSELsemiconductor lasers: a path to high-power, quality beam and UV to IR wavelength by design[M]. New York: Wiley-VCH Verlag, 2010: 1-71.

【7】Heinen B, Wang T L, Sparenberg M, et al. 106 W continuous-wave output power from vertical-external-cavity surface-emitting laser[J]. Electronics Letters, 2012, 48(9): 516-517.

【8】Shi J J, Qin L, Ning Y Q, et al. 850 nm vertical cavity surface-emitting laser arrays[J]. Optics and Precision Engineering, 2012, 20(1): 17-23.
史晶晶, 秦莉, 宁永强, 等. 850 nm垂直腔面发射激光器阵列[J]. 光学 精密工程, 2012, 20(1): 17-23.

【9】Zhou D L, Seurin J F, Xu G Y, et al. Progress on vertical-cavity surface-emitting laser arrays for infrared illumination applications[C]. SPIE, 2014: 172-176.

【10】Seurin J F, Xu G, Khalfin V, et al. Progress in high-power high-efficiency VCSEL arrays[J].Proceedings of SPIE, 2009, 7229: 722903.

【11】Photonics Media. PR-HPIL-4800-W808 VCSEL illuminator[EB/OL].(2013-08-27)[2017-11-06]https:∥www.photonics.com/Product.aspx?PID=5&VID=109&IID=722&PRID=54712.

【12】Princeton Optronics. 4 W 850 nm VCSEL array[EB/OL].[2017-11-06]http:∥www.princetonoptronics.com/wp-content/uploads/PCW-SMV-4-W0850-datasheet2.pdf.

【13】Watkins L, Ghosh C, Seurin J F, et al. High-power vertical-cavity surface-emitting lasers for atomic clock applications[J]. SPIE Newsroom, 2015.

【14】D′Asaro L A, Seurin J F, Wynn J D. High-power, high-efficiency VCSELs pursue the goal[J]. Photonics Spectra, 2005, 39(2): 62-66.

【15】Wang L J, Ning Y Q, Qin L, et al. Development of high power diode laser[J]. Chinese Journal of Luminescence, 2015, 36(1): 1-19.
王立军, 宁永强, 秦莉, 等. 大功率半导体激光器研究进展[J]. 发光学报, 2015, 36(1): 1-19.

【16】Hou H Q, Choquette K D, Geib K M, et al. High-performance 1.06 μm selectively oxidized vertical-cavity surface-emitting lasers with InGaAs-GaAsP strain-compensated quantum wells[J]. IEEE Photonics Technology Letters, 1997, 9(8): 1057-1059.

【17】Kageyama T, Takaki K, Imai S, et al. High efficiency 1060nm VCSELS for low power consumption[C]∥Proceedings of IEEE International Conference on Indium Phosphide and Related Materials, 2009, 109: 391-396.

【18】Boehm G, Ortsiefer M, Shau R, et al. InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0 μm[J]. Journal of Crystal Growth, 2003, 251(1): 748-753.

【19】Klem J F, Serkland D K, Geib K M. Advances in 1300 nm InGaAsN quantum well VCSELs[C]. SPIE, 2002, 4646: 137-144.

【20】Nishida T, Takaya M, Kakinuma S, et al. 4.2 mW GaInNAs long-wavelength VCSEL grown by metalorganic chemical vapor deposition[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(5): 958-961.

【21】Michalzik R. VCSELs: Fundamentals, technology and applications of vertical-cavity surface-emitting lasers[M]. Berlin: Springer-Verlag, 2013: 353-377.

【22】Omae K, Higuchi Y, Nakagawa K, et al. Improvement in lasing characteristics of GaN-based vertical-cavity surface-emitting lasers fabricated using a GaN Substrate[J]. Applied Physics Express, 2009, 2(5): 052101.

【23】Kasahara D, Morita D, Kosugi T, et al. Demonstration of blue and green GaN-based vertical-cavity surface-emitting lasers by current injection at room temperature[J]. Applied Physics Express, 2011, 4(7): 072103.

【24】Hamaguchi T, Fuutagawa N, Izumi S, et al. Milliwatt-class GaN-based blue vertical-cavity surface-emitting lasers fabricated by epitaxial lateral overgrowth[J]. Physica Status Solidi (A) Applications and Materials Science, 2016, 213(5): 1170-1176.

【25】Johnson K, Hibbs-Brenner M. High output power 670 nm VCSELs[C]. Proceedings of SPIE, 2007, 6484: 648404.

【26】Seurin J F, Khalfin V, Xu G Y, et al. High-power red VCSEL arrays[C]. Proceedings of SPIE, 2013, 8639: 86390O.

【27】McInerney J G, Mooradian A, Lewis A, et al. High-power surface emitting semiconductor laser with extended vertical compound cavity[J]. Electronics Letters, 2003, 39(6): 523-525.

【28】Shchegrov A V, Umbrasas A, Watson J P, et al. 532 nm laser sources based on intracavity frequency doubling of extended-cavity surface-emitting diode lasers[C]. Proceedings of SPIE, 2004, 5332: 151-156.

【29】Watson J, Shchegrov A, Umbrasas A, et al. Laser sources at 460 nm based on intracavity doubling of extended-cavity surface-emitting lasers[C]. Proceedings of SPIE, 2004, 5364: 116-121.

【30】Leeuwen R V, Seurin J F, Xu G Y, et al. High power pulsed intracavity frequency doubled vertical extended cavity blue laser arrays[C]. Proceedings of SPIE, 2009, 7193: 71931D.

【31】Zhang L S. Structure design and fabrication of high power vertical cavity surface emitting laser[D]. Changchun : Graduate University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics), 2012.
张立森. 大功率垂直腔面发射激光器的结构设计与研制[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2012.

【32】Kurdi M E, Bouchoule S, Bousseksou A, et al. Room-temperature continuous-wave laser operation of electrically-pumped 1.55 μm VECSEL[J]. Electronics Letters, 2004, 40(11): 671-672.

【33】Bousseksou A, Bouchoule S, Kurdi M E, et al. Fabrication and characterization of 1.55 μm single transverse mode large diameter electrically pumped VECSEL[J]. Optical and Quantum Electronics, 2006, 38(15): 1269-1278.

【34】Hrknen A, Bachmann A, Arafin S, et al. 2.34 μm electrically pumped VECSEL with buried tunnel junction[C]. Proceedings of SPIE, 2010, 7720: 772015.

【35】Zhang W, Ackemann T, McGinily S, et al. Operation of an optical in-well pumped vertical-external-cavity surface-emitting laser[J]. Applied Optics, 2006, 45(29): 7729-7735.

【36】Beyertt S S, Brauch U, Demaria F, et al. Efficient gallium-arsenide disk laser[J]. IEEE Journal of Quantum Electronics, 2007, 43(10): 869-875.

【37】Chilla J L A, Butterworth S D, Zeitschel A, et al. High power optically pumped semiconductor lasers[C]. Proceedings of SPIE, 2004, 5332: 143-150.

【38】Rudin B, Rutz A, Hoffmann M, et al. Highly efficient optically pumped vertical-emitting semiconductor laser with more than 20 W average output power in a fundamental transverse mode[J]. Optics Letters, 2008, 33(22): 2719-2721.

【39】Lee J H, Kim J Y, Lee S M, et al. 9.1 W High-efficient continuous-wave end-pumped vertical-external-cavity surface-emitting semiconductor laser[J]. IEEE Photonics Technology Letters, 2006, 18(20): 2117-2119.

【40】Zhang F, Heinen B, Wichmann M, et al. A 23 watt single-frequency vertical-external-cavity surface-emitting laser[J]. Optics Express, 2014, 22(11): 12817-12822.

【41】Kantola E, Leinonen T, Ranta S, et al. 1180 nm VECSEL with 50 W output power[C]. Proceedings of SPIE, 2015, 9349: 93490U.

【42】Leinonen T, Iakovlev V, Sirbu A, et al. 33 W continuous output power semiconductor disk laser emitting at 1275 nm[J]. Optics Express, 2017, 25(6): 7008-7013.

【43】Lyytikinen J, Rautiainen J, Toikkanen L, et al. 1.3 μm optically-pumped semiconductor disk laser by wafer fusion[J]. Optics Express , 2009, 17(11): 9047-9052.

【44】Rautiainen J, Lyytikinen J, Sirbu A, et al. 2.6 W optically-pumped semiconductor disk laser operating at 1.57 μm using wafer fusion[J]. Optics Express, 2008, 16(26): 21881-21886.

【45】Rantamki A, Rautiainen J, Sirbu A, et al. 1.56 μm 1 watt single frequency semiconductor disk laser[J]. Optics Express, 2013, 21(2): 2355-2360.

【46】Lyytikinen J, Rautiainen J, Sirbu A, et al. High-power 1.48 μm wafer-fused optically pumped semiconductor disk laser[J]. IEEE Photonics Technology Letters, 2011, 23(13): 917-919.

【47】Sirbu A, Rantamki A, Saarinen E J, et al. High performance wafer-fused semiconductor disk lasers emitting in the 1300 nm waveband[J]. Optics Express, 2014, 22(24): 29398-29403.

【48】Hopkins J M, Hempler N, Rsener B, et al. High-power, (AlGaIn)(AsSb) semiconductor disk laser at 2.0 μm[J]. Optics Letters, 2008, 33(2): 201-203.

【49】Holl P, Rattunde M, Adler S, et al. Recent advances in power scaling of GaSb-based semiconductor disk lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(6): 1501012.

【50】Holl P, Rattunde M, Adler S, et al. GaSb-based VECSEL for high-power applications and Ho-pumping[C]. SPIE, 2017, 10087: 1008705.

【51】Ishida A, Sugiyama Y, Isaji Y, et al. 2 W high efficiency PbS mid-infrared surface emitting laser[J]. Applied Physics Letters, 2011, 99(12): 121109.

【52】Khiar A, Volobuev V, Witzan M, et al. In-well pumped mid-infrared PbTe/CdTe quantum well vertical external cavity surface emitting lasers[J]. Applied Physics Letters, 2014, 104(23): 231105.

【53】Rahim M, Felder F, Fill M, et al. Optically pumped 5 μm IV-VI VECSEL with Al-heat spreader[J]. Optics Letters, 33(24): 3010-3012.

【54】Debusmann R, Brauch U, Hoffmann V, et al. Spacer and well pumping of InGaN vertical cavity semiconductor lasers with varying number of quantum wells[J]. Journal of Applied Physics, 2012, 112(3): 033110.

【55】Baumgrtner S, Kahle H, Bek R, et al. Comparison of AlGaInP-VECSEL gain structures[J]. Journal of Crystal Growth, 2015, 414: 219-222.

【56】Mateo C M N, Brauch U, Kahle H, et al. 2.5 W continuous wave output at 665 nm from a multipass and quantum-well-pumped AlGaInP vertical-external-cavity surface-emitting laser[J]. Optics Letters, 2016, 41(6): 1245-1248.

【57】Zhou H L, Diagne M, Makarona E, et al. Near ultraviolet optically pumped vertical cavity laser[J]. Electronics Letters, 2000, 36(21): 1777-1779.

【58】Zaugg C A, Gronenborn S, Moench H, et al. Absorber and gain chip optimization to improve performance from a passively modelocked electrically pumped vertical external cavity surface emitting laser[J]. Applied Physics Letters, 2014, 104(12): 121115.

【59】Kornaszewski L, Maker G, Malcolm G P A, et al. SESAM-free mode-locked semiconductor disk laser[J]. Laser & Photonics Reviews, 2012, 6(6): 20-23.

【60】Quarterman A H, Wilcox K G, Apostolopoulos V, et al. A passively mode-locked external-cavity semiconductor laser emitting 60 fs pulses[J]. Nature Photonics, 2009, 3: 729-731.

【61】Wilcox K G, Quarterman A H, Apostolopoulos V, et al. 175 GHz, 400 fs-pulse harmonically mode-locked surface emitting semiconductor laser[J]. Optics Express, 2012, 20(7): 7040-7045.

【62】Rudin B, Wittwer V J, Maas D J H C, et al. High-power MIXSEL: an integrated ultrafast semiconductor laser with 6.4 W average power[J]. Optics Express, 2010; 18(26): 27582-27588.

【63】Wilcox K G, Tropper A C, Beere H E, et al. 4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation[J]. Optics Express, 2013, 21(2): 1599-1605.

【64】Husaini S, Bedford R G. Graphene saturable absorber for high power semiconductor disk laser mode-locking[J]. Applied Physics Letter, 2014, 104(16): 161107.

【65】Lubeigt W, Bialkowski B, Lin J P, et al. Commercial mode-locked vertical external cavity surface emitting lasers[C]. SPIE, 2017, 10087: 100870D.

【66】Scheller M, Baker C W, Koch S W, et al. High power dual-wavelength VECSEL based on a multiple folded cavity[J]. IEEE Photonics Technology Letters, 2017, 29(10): 790-793.

【67】Hoogland S, Dhanjal S, Tropper A C, et al. Passively mode-locked diode-pumped surface-emitting semiconductor laser[J]. IEEE Photonics Technology Letters, 2000, 12(9): 1135-1137.

【68】Kottke C, Caspar C, Jungnicke V, et al. High speed 160 Gb/s DMT VCSEL transmission using pre-equalization[C]. Optical Fiber Communication Conference, 2017, W41: W4I. 7.

【69】Chen X, Hurley J, Stone J, et al. Universal fiber for both short-reach VCSEL transmission at 850 nm and single-mode transmission at 1310 nm[C]∥Proceedings of IEEE Optical Fiber Communications Conference and Exhibition, 2016.

【70】Kuchta D M, Huynh T N, Doany F E, et al. Error-free 56 Gb/s NRZ modulation of a 1530 nm VCSEL link[J]. Journal of Lightwave Technology, 2016, 34(14): 3275-3282.

【71】Gierl C, Gruendl T, Debernardi P, et al. Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning[J]. Optics Express, 2011, 19(18): 17336-17343.

【72】Matsui Y, Vakhshoori D, Wang P D, et al. Complete polarization mode control of long-wave length tunable vertical-cavity surface-emitting lasers over 65 nm tuning, up to 14 mW output power[J]IEEE Journal of Quantum Electronics, 2003, 39(9): 1037-1048.

【73】Jayaraman V, Cole G D, Robertson M, et al. High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range[J]. Electronics Letters, 2012, 48(14): 867-869.

【74】Zong N, Li C M, Chen Y H, et al. Research and progress of optically pumped semiconductor vertical-external-cavity surface-emitting lasers[J]. Infrared and Laser Engineering, 2007, 36(6): 785-789.
宗楠, 李成明, 陈亚辉, 等. 光泵垂直扩展腔面发射半导体激光器的研究进展[J]. 红外与激光工程, 2007, 36(6): 785-789.

【75】Harkonen A. Antimonide disk lasers achieve multiwatt power and a wide tuning range[J]. SPIE Newsroom, 2009.

【76】Ouvrard A, Garnache A, Cerutti L, et al. Single-frequency tunable Sb-based VCSELs emitting at 2.3 μm[J]. IEEE Photonics Technology Letters, 2005, 17(10): 2020-2022.

【77】Jiang L D, Zhang X H, Zhan X H, et al. Progress in frequency- doubled external-cavity surface-emitting laser[J]. Laser & Optoelectronics Progress, 2016, 53(9): 090001.
蒋丽丹, 张晓华, 詹小红, 等. 倍频外腔面发射激光器研究进展[J]. 激光与光电子学进展, 2016, 53(9): 090001.

【78】Hunziker L E, Ihli C, Steingrube D S. Miniaturization and power scaling of fundamental mode optically pumped semiconductor lasers[J]. IEEE Journal of Selected Topics Quantum Electron, 2007, 13(3): 610-618.

【79】Chilla J, Shu Q Z, Zhou H L, et al. Recent advances in optically pumped semiconductor lasers[C]. SPIE, 2007, 6451: 645109.

【80】Chilla J L A, Zhou H L, Weiss E, et al. Blue and green optically pumped semiconductor lasers for display[C]. SPIE, 2005, 5740: 41-47.

【81】Rautiainen J, Hrknen A, Korpijrvi V M, et al. 2.7 W tunable orange-red GaInNAs semiconductor disk laser[J]. Optics Express, 2007, 15(26): 18345-18350.

【82】Kantola E, Leinonen T, Ranta S, et al. High-efficiency 20 W yellow VECSEL[J]. Optics Express, 2014, 22(6): 6372-6380.

【83】Hessenius C, Lukowski M, Moloney J, et al. Tunable single-frequency yellow laser for sodium guidestar applications[J]. SPIE Newsroom, 2012.

【84】Kantola E, Leinonen T, Penttinen J P, et al. 615 nm GaInNAs VECSEL with output power above 10 W[J]. Optics Express, 2015, 23(16): 20280-20287.

【85】Yakshin M, Hessenius C, Prasad C, et al. A compact, efficient deep UV optically pumped VECSEL[C]. CLEO: Science and Innovations, 2017: SM3M. 4.

【86】Bedford R G, Kolesik M, Chilla J L A, et al. Power-limiting mechanisms in VECSELs[C]. Proceedings of SPIE, 2005, 5814: 199-208.

【87】Zhang P, Dai T L, Liang Y P, et al. Optimization of pump pulses in a vertical-cavity surface-emitting laser[J]. Chinese Journal of Lasers, 2013, 40(4): 0402001.
张鹏, 戴特力, 梁一平, 等. 垂直外腔面发射激光器抽运脉冲的优化设计[J]. 中国激光, 2013, 40(4): 0402001.

【88】Liu X N, Wang X H, Wang F, et al. Analysis of thermal characteristics in optically pumped semiconductor vertical-external-cavity surface-emitting laser with doubled heatspreader[J]. Laser & Optoelectronics Progress, 2011, 48(9): 091404.
刘向南, 王晓华, 王菲, 等. 双散热片结构光抽运垂直外腔面发射激光器的热特性分析[J]. 激光与光电子学进展, 2011, 48(9): 091404.

【89】Kaneda Y, Fan L, Hsu T C, et al. High brightness spectral beam combination of high-power vertical-external-cavity surface-emitting lasers[J]. IEEE Photonics Technology Letters, 2006, 18(17): 1795-1797.

【90】Park S H, Kim J, Jeon H, et al. Room-temperature GaN vertical-cavity surface-emitting laser operation in an extended cavity scheme[J]. Applied Physics Letters, 2003, 83(11): 2121-2123.

【91】Park S H, Jeon H. Microchip-type InGaN vertical external-cavity surface-emitting laser[J]. Optical Review, 2006, 13(1): 20-23.

【92】Leinonen T, Ranta S, Laakso A, et al. Dual-wavelength generation by vertical external cavity surface-emitting laser[J]. Optics Express, 2007, 15(20): 13451-13456.

【93】Leinonen T, Morozov Y A, Harkonen A, et al. Vertical external-cavity surface-emitting laser for dual-wavelength generation[J]. IEEE Photonics Technology Letters, 2005, 17(12): 2508-2510.

【94】Illek S, Albrecht T, Brick P, et al. Vertical-external-cavity surface-emitting laser with monolithically integrated pump lasers[J]. IEEE Photonics Technology Letters, 2007, 19(24): 1952-1954.

【95】Maas D J H C, Bellancourt A R, Rudin B, et al. Vertical integration of ultrafast semiconductor lasers[J]. Applied Physics B, 2007, 88(4): 493-497.

【96】激光网. VCSEL激光器市场爆发: 国内能否分一杯羹?[EB/OL]. (2017-08-17)[2018-1-3]. http:∥laser.ofweek.com/2017-08/ART-240002-8420-30161487.html.

引用该论文

Li Yujiao,Zong Nan,Peng Qinjun. Characteristics and Progress of Vertical-Cavity Surface-Emitting Semiconductor Lasers[J]. Laser & Optoelectronics Progress, 2018, 55(5): 050006

李玉娇,宗楠,彭钦军. 垂直腔面发射半导体激光器的特性及其研究现状[J]. 激光与光电子学进展, 2018, 55(5): 050006

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF