首页 > 论文 > 激光与光电子学进展 > 55卷 > 5期(pp:51502--1)

基于改进的区域生长三维点云分割

Three-Dimensional Point Cloud Segmentation Algorithm Based on Improved Region Growing

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

点云分割是点云数据处理的关键环节,区域生长因在三维点云分割中易于实现、便于使用而得到了广泛应用,然而由于点云特征的不确定性及种子点选取不合理导致传统区域生长法局部分割性能不稳定。针对此问题,提出一种改进的区域生长分割方法。通过估算点云数据曲率大小,并将曲率最小点设置为种子节点,即从点云数据最平坦的区域开始生长,以减少分段总数,再根据点云数据的局部特征确定生长准则。实验结果表明,该方法不仅能有效地对点云数据进行分割,而且解决了传统区域生长分割不稳定的问题,提高了点云分割的精确性和可靠性。

Abstract

The segmentation of point cloud play a key role in the processing of point cloud data, the regional growth is widely used in three-dimensional point cloud segmentation because it is easy to implement and use. However, due to the uncertainty of the point cloud characteristics and the unreasonable selection of seed point, the traditional regional growth method has the instability of local segmentation performance. To resolve this problem, an improved method of regional growth segmentation is presented, we set the minimum curvature point to the seed point by estimating the magnitude of the curvature of point cloud data. The reason for this is that the point with the minimum curvature is located in the flat area ,growth from the flattest area can reduce the total number of segments, then the growth criteria is determined according to the local characteristics of point cloud data. Experimental results show that this method can divide the point cloud data effectively, solve the problem of the instability of the traditional regional growth, and improve the accuracy and reliability of point cloud segmentation.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP242

DOI:10.3788/lop55.051502

所属栏目:机器视觉

基金项目:中国纺织工业联合会科技指导性项目(2017071)

收稿日期:2017-11-13

修改稿日期:2017-11-26

网络出版日期:--

作者单位    点击查看

李仁忠:西安工程大学电子信息学院, 陕西 西安 710048
刘阳阳:西安工程大学电子信息学院, 陕西 西安 710048
杨曼:西安工程大学电子信息学院, 陕西 西安 710048
张缓缓:西安工程大学电子信息学院, 陕西 西安 710048

联系人作者:李仁忠(lirenzhong@xpu.edu.cn)

备注:李仁忠(1978-),男,博士,副教授,主要从事图像处理,光电子能谱等方面的研究。E-mail: lirenzhong@xpu.edu.cn

【1】Hofmann A D, Maas H G, Streilein A. Knowledge-based building detection based on laser scanner data and topographic map information[J]. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 2002, 34(3/A): 169-174.

【2】Pu S, Vosselman G. Automatic extraction of building features from terrestrial laser scanning[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2006, 36: 33-39.

【3】Boulaassal H, Landes T, Grussenmeyer P. Automatic extraction of planar clusters and their contours on building faades recorded by terrestrial laser scanner[J]. International Journal of Architectural Computing, 2009, 7(1): 1-20.

【4】Tarsha-Kurdi F, Landes T, Grussenmeyer P. Hough-transform and extended RANSAC algorithms for automatic detection of 3D building roof planes from LIDAR data[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Systems, 2007, 36: 407-412.

【5】Wang Y H, Hao W, Ning X J, et al. Automatic segmentation of urban point clouds based on the Gaussian map[J]. The Photogrammetric Record, 2013, 28(144): 342-361.

【6】Biosca J M, Lerma J L. Unsupervised robust planar segmentation of terrestrial laser scanner point clouds based on fuzzy clustering methods[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2008, 63(1): 84-98.

【7】Wang Y N. Research of Segmentationalgorithm for scattered point cloud based on local convexity[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2016.
王雅男. 基于局部表面凸性的散乱点云分割算法研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2016.

【8】Zucker S W. Regiorowing:childhood and adolescence[J]. Computer Graphics and Image Processing, 1976, 5(3): 382-399.

【9】Gao F. 375 cases of MATLAB image processing[M]. Beijing: Posts and Telecommunications Press, 2015.
高飞. MATLAB图像处理375例[M]. 北京: 人民邮电出版社, 2015.

【10】Zhang L, Guo L M, He W, et al. An image segmentation algorithm based on maximal variance between-class and region growing[J]. Information and Electronic Engineering, 2005, 3(2): 91-96.
张玲, 郭磊民, 何伟, 等. 一种基于最大类方差和区域生长的图像分割法[J].信息与电子工程, 2005, 3(2): 91-96.

【11】Angelina S, Suresh L P, Veni S H K. Image segmentation based on genetic algorithm for region growth and region merging[C]. Computing, Electronics and Electrical Technologies, 2012: 970-974.

【12】Xiao X M, Ma Z, Cai Z X, et al. Road image segmentation based on an adaptive region growing[J]. Control Engineering of China, 2011, 18 (3): 364-368.
肖晓明, 马智, 蔡自兴, 等. 一种自适应的区域生长算法用于道路分割[J]. 控制工程, 2011, 18(3): 364-368.

【13】Besl P J, Jain R C. Segmentation through variable-order surface fitting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(2): 167-192.

【14】Chen J, Chen B Q. Architectural modeling from sparsely scanned range data[J]. International Journal of Computer Vision, 2008, 78(2/3): 223-236.

【15】Vosselman G, Gorte B G H, Sithole G, et al. Recognising structure in laser scanner point clouds[C]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2004, 46(8): 33-38.

【16】Rusu R B, Marton Z C, Blodow N, et al. Towards 3D Point cloud based object maps for household environments[J]. Robotics and Autonomous Systems, 2008, 56(11): 927-941.

【17】Rusu R B, Cousins S. 3D is here: point cloud library (PCL)[C]. IEEE International Conference on Robotics and Automation, 2011: 1-4.

【18】Chen X J, Zhang G, Hua X H. Point cloud simplification based on the information entropy of normal vector angle[J]. Chinese Journal of Lasers, 2015, 42(8): 0814003.
陈西江, 章光, 花向红. 于法向量夹角信息熵的点云简化算法[J]. 中国激光, 2015, 42(8): 0814003.

【19】Li R Z, Yang M, Liu Y Y, et al. An uniform simplification algorithm of scattered point cloud[J]. Acta Optica Sinica, 2017, 37(7): 0710002.
李仁忠, 杨曼, 刘阳阳, 等. 一种散乱点云的均匀精简算法[J]. 光学学报, 2017, 37(7): 0710002.

【20】Zhu D H. The PCL learning course of point cloud library[M]. Beijing:Beihang University of Press, 2012.
朱德海. 点云库 PCL 学习教程[M]. 北京: 北京航空航天大学出版社, 2012.

【21】Bentley J L. Multidimensional binary search trees used for associative searching[J]. Communications of the ACM, 1975, 18(9): 509-517.

【22】Awwad T M, Zhu Q, Du Z Q, et al. An improved segmentation approach for planar surfaces from unstructured 3D point clouds[J]. The Photogrammetric Record, 2010, 25(129): 5-23.

引用该论文

Li Renzhong,Liu Yangyang,Yang Man,Zhang Huanhuan. Three-Dimensional Point Cloud Segmentation Algorithm Based on Improved Region Growing[J]. Laser & Optoelectronics Progress, 2018, 55(5): 051502

李仁忠,刘阳阳,杨曼,张缓缓. 基于改进的区域生长三维点云分割[J]. 激光与光电子学进展, 2018, 55(5): 051502

被引情况

【1】任璐,李锵,关欣,马杰. 改进的连续型最大流算法脑肿瘤磁核共振成像三维分割. 激光与光电子学进展, 2018, 55(11): 111011--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF