首页 > 论文 > 激光与光电子学进展 > 55卷 > 5期(pp:52701--1)

运动原子和场相互作用模型中的量子关联

Quantum Correlations in Moving Atom-field Interaction Model

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用运动原子和场相互作用模型,研究了当两原子处于纠缠态而光场处于真空态时,原子运动及耦合系数的线性变化对量子关联的影响。结果表明,对于单光子过程,随着场模结构参数的增大,量子关联增大;耦合系数的线性变化对量子关联有积极作用;对于双光子过程,与耦合系数为常数的情况相比,场模结构参数及耦合系数的线性变化对量子关联的积极影响作用更显著。

Abstract

By using the moving atom-field interaction model, the effects of the atomic motion and the linear change of coupling coefficient on quantum correlations are investigated when the two atoms are in the entangled states and the light field is in the vacuum state. The results show that, as for the single-photon process, the quantum correlations increase with the increment of the structure parameters of field mode. The linear change of coupling coefficient plays a positive role on the quantum correlations. As for the two-photon process, the positive effects of the structure parameters of field mode and the linear change of coupling coefficient on the quantum correlations are more obvious if compared with the case that the coupling coefficient is constant.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436

DOI:10.3788/lop55.052701

所属栏目:量子光学

基金项目:国家高层次人才特殊支持计划后备人选之科技创新领军人才项目、新疆维吾尔自治区杰出青年基金(2013911019)、自治区天山英才工程第二层次培养人选项目、新疆师范大学“十三五”校级重点学科物理学招标课题资助(17SDKDWL01)

收稿日期:2017-11-21

修改稿日期:2017-12-06

网络出版日期:--

作者单位    点击查看

马蓉:新疆师范大学物理与电子工程学院, 新疆 乌鲁木齐 830054
艾合买提·阿不力孜:新疆师范大学物理与电子工程学院, 新疆 乌鲁木齐 830054
艾尔肯江·艾木都拉:新疆师范大学物理与电子工程学院, 新疆 乌鲁木齐 830054
麦日克那·艾力:新疆师范大学物理与电子工程学院, 新疆 乌鲁木齐 830054

联系人作者:艾合买提·阿不力孜(aahmad@126.com)

备注:马蓉(1992—),女,硕士研究生,主要从事量子光学与量子信息方面的研究。E-mail: marong@mail.ustc.edu.cn

【1】Nielson M A, Chuang I L. Quantum computation and quantum information: 10th anniversary edition[M]. Cambridge: Cambridge University Press, 2011.

【2】Qiu C D, Lu D M. Entanglement characteristics in two-dimensional coupled cavity systems[J]. Acta Optica Sinica,2016, 36(5): 0527001.
邱昌东, 卢道明. 两维耦合腔系统中的纠缠特性[J]. 光学学报, 2016, 36(5): 0527001.

【3】Yang X L, Sun T, Zhang B, et al. Classical-field-assisted three-atom quantum entanglement dynamics[J]. Acta Optica Sinica, 2016, 36(12): 1227001.
杨秀丽, 孙童, 张博, 等. 经典场辅助下的三原子量子纠缠动力学[J]. 光学学报, 2016, 36(12): 1227001.

【4】Yan L. Effect of interatomic distance in photonic band gap on entanglement evolution property among three atoms[J]. Acta Optica Sinica, 2017, 37(8): 0827001.
闫丽. 光子禁带中原子间距对三原子间纠缠演化特性的影响[J]. 光学学报, 2017, 37(8): 0827001.

【5】Briegel H J, Dür W, Cirac J I, et al. Quantum repeaters for communication[EB/OL]. (1998-03-20)[2017-06-03].https:∥arxiv.org/abs/quant-ph/9803056.

【6】Rosenfeld W, Hocke F, Henkel F, et al. Towards long-distance atom-photon entanglement[J]. Physical Review Letters, 2008, 101(26): 260403.

【7】Dakic B, Vedral V, Brukner C. Necessary and sufficient condition for nonzero quantum discord[J]. Physical Review Letters, 2010, 105(19): 190502.

【8】Ollivier H, Zurek W H. Quantum discord: a measure of the quantumness of correlations[J]. Physical Review Letters, 2002, 88(1): 017901.

【9】Lanyon B P, Barbieri M, Almeida M P, et al. Experimental quantum computing without entanglement[J]. Physical Review Letters, 2008, 101(20): 200501.

【10】Luo S. Quantum discord for two-qubit systems[J]. Physical Review A, 2008, 77(4): 140-140.

【11】Lang M D, Caves C M. Quantum discord and the geometry of Bell-diagonal states[J]. Physical Review Letters, 2010, 105(15): 150501.

【12】Girolami D, Adesso G. Quantum discord for general two-qubit states:analytical progress[J]. Physical Review A, 2011, 83(5): 10017-10028.

【13】Chen Q, Zhang C, Yu S, et al. Quantum discord of two-qubit states[J].Physical Review A, 2011, 84(4): 10814-10822.

【14】Dakic B, Lipp Y O, Ma X, et al. Quantum discord as resource for remote state preparation[J]. Nature Physics, 2013, 8(9): 666-670.

【15】Giorgi G L. Quantum discord and remote state preparation[J].Physical Review A, 2013, 88(2): 022315.

【16】Horodecki P, Tuziemski J, Mazurek P, et al. Can communication power of separable correlations exceed that of entanglement resource?[J].Physical Review Letters, 2014, 112(14): 140507.

【17】Jaynes E T, Cummings F W. Comparison of quantum and semiclassical radiation theories with application to the beam maser[J]. Proceedings of the IEEE, 1962, 51(1): 89-109.

【18】Li R Q, Lu D M. Quantum discord in the system of atoms interacting with coupled cavities[J]. Acta Physica Sinica, 2014, 63(3): 030301.
李锐奇, 卢道明. 原子与耦合腔相互作用系统中的量子失协[J]. 物理学报, 2014, 63(3): 030301.

【19】Lü H Y, Yuan W, Hou X W. Dynamical entanglement in the model of field interacted with atoms of a nonlinear medium[J]. Acta Physica Sinica, 2013, 62(11): 110301.
吕海艳, 袁伟, 侯喜文. 场与非线性介质原子相互作用模型的量子纠缠动力学特性[J]. 物理学报, 2013, 62(11): 110301.

【20】Song J, Cao Z L. Dynamical properties in the system of two identical two-level entangled atoms interacting with radiation fields in binomial states[J]. Acta Physica Sinica, 2005, 54(2): 696-702.
宋军, 曹卓良. 两纠缠原子与二项式光场相互作用的动力学[J]. 物理学报, 2005, 54(2): 696-702.

【21】Hidayat C, Nakajima M, Takagi M, et al. Entangled states and information induced by the atom-field interaction[J]. Optics Communications, 2005, 250(1/2/3): 148-156.

【22】Bashkirov E K, Rusakova M S. Atom-field entanglement in two-atom Jaynes-Cummings model with nondegenerate two-photon transitions[J]. Optics Communications, 2008, 281(17): 4380-4386.

【23】Gao D Y, Xia Y J. Quantum correlation dynamics of motive atoms in cavity quantum electrodynamics[J]. Laser & Optoelectronics Progress, 2015, 52(8): 082701.
高德营, 夏云杰. 腔量子电动力学中运动原子量子关联的动力学[J]. 激光与光电子学进展, 2015, 52(8): 082701.

【24】Diedrich F, Bergquist J C, Itano W M, et al. Laser cooling to the zero-point energy of motion[J]. Physical Review Letters, 1989, 62(4): 403.

【25】Liu X J, Fang M F, Zhou Q P. Quantum mechanical channel and quantum mutual entropy in the two photon Jaynes-Cummings model with atomic motion[J]. Acta Physica Sinica, 2005, 54(2): 703-709.
刘小娟, 方卯发, 周清平. 具有原子运动的双光子J-C模型中量子力学通道与量子互熵[J].物理学报, 2005, 54(2): 703-709.

【26】Schlicher R R. Jaynes-Cummings model with atomic motion[J]. Optics Communications, 1989, 70(2): 97-102.

【27】Joshi A, Lawande S V. Squeezing and quasiprobabilities for a two-photon Jaynes-Cummings model with atmic motion[J]. International Journal of Modern Physics B, 1992, 6(21): 3539-3550.

【28】Chen A X, Wu S D, Jin L X, et al. Interaction of a moving two-level atom with a two-mode quantized cavity field[J]. Acta Physica Sinica, 2003, 52(10): 2466-2470.
陈爱喜, 吴曙东, 金丽霞,等. 运动的二能级原子与双模量子化腔场的相互作用[J]. 物理学报, 2003, 52(10): 2466-2470.

【29】Wang J C, Liao Q H, Wang Y Y, et al. Entropy exchange and entanglement of a moving atom with k-photon Jaynes-Cummings model[J]. Acta Physica Sinica, 2011, 60(11): 114208.
王继成, 廖庆洪, 王月媛, 等. k光子Jaynes-Cummings模型与运动原子相互作用中的熵交换及纠缠[J]. 物理学报, 2011, 60(11): 114208.

【30】Hu Y H. Entropy exchange and entanglement in the multi-photon J-C model of a moving atom[J]. Acta Physica Sinica, 2012, 61(12): 120302.
胡要花. 运动原子多光子J-C模型中的熵交换与纠缠[J].物理学报, 2012, 61(12): 120302.

【31】Joshi A, Lawande S V. Generalized Jaynes-Cummings models with a time-dependent atom-field coupling[J]. Physical Review A, 1993, 48(3): 2276-2284.

【32】Kayhan H. Control of sudden death of entanglement by transient effects[J]. Communications in Theoretical Physics, 2011, 56(9): 487-489.

【33】Hu Y H, Tan Y G. Effect of the time-dependent atom-field couplings on entanglement[J]. Communications in Theoretical Physics, 2014, 62(7): 49-53.

【34】Alsing P, Zubairy M S. Collapse and revivals in a two-photon absorption process[J]. Journal of the Optical Society of America B, 1987, 4(2): 177-184.

【35】Hill S, Wootters W K. Entanglement of a pair of quantum bits[J]. Physical Review Letters, 1997, 78(26): 5022-5025.

引用该论文

Ma Rong,Ahmad Abliz,Erkinjan Hamdulla,Markina Ali. Quantum Correlations in Moving Atom-field Interaction Model[J]. Laser & Optoelectronics Progress, 2018, 55(5): 052701

马蓉,艾合买提·阿不力孜,艾尔肯江·艾木都拉,麦日克那·艾力. 运动原子和场相互作用模型中的量子关联[J]. 激光与光电子学进展, 2018, 55(5): 052701

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF