首页 > 论文 > 液晶与显示 > 33卷 > 3期(pp:238-244)

无人飞行器自主降落区识别方法研究

Method for identifying the landing area of

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为实现无人飞行器的自主降落, 针对降落平坦区域包含特征较少、且分布没规律、形状各异等特点, 本文设计了一种基于点云几何特征的快速点云分块和平坦区识别方法。该方法通过无人飞行器上的相机获取二维图像, 并使用多视角立体三维重建技术获得场景三维点云, 提出了以空间距离作为平滑项、以点在Z方向上的高度作为相似项的三维点云滤波算法对三维点云滤波,设计了基于点云法线和曲率的聚类分块对点云进行区域划分, 然后改进RANSAC算法拟合点云平面, 筛选出无人飞行器飞经场景的平坦区, 并最终确定出无人飞行器的最佳降落区。最后, 用本文所设计方法对戈壁人工沟壑、戈壁自然沟壑和小区花园等实拍场景图像进行降落区识别, 实测结果显示识别出的区域地形起伏均小于0.125 m@m2, 满足无人飞行器降落要求。unmanned aerial vehicle

Abstract

In order to achieve unmanned aerial vehicle self- landing, considering the characteristics of UAVs (unmanned aerial vehicle) landing areas which are lack of features and irregular distribution in different shapes, an UAV landing area identification method is proposed based on point cloud processing technologies in this paper. Multi-view 3D reconstruction algorithm is used to generate point cloud from images captured by a camera fixed on an UAV. Taking the spatial distance as the smoothing term and the height of the points in the Z direction as the similarity term, a 3D point-cloud bilateral filtering algorithm is proposed in this paper to reduce noise points. A cluster segmentation based on the normal and curvature information of point cloud is designed to segment the point clouds. And an improved RANSAC algorithm for plane fitting is used to identify flat areas. Then, a selection method is proposed to select landing area for UAV. At last, several real scenes’ images are used to generate point clouds to test the accuracy of the algorithm. The experimental results show that the fluctuation of the identified area is less than 0.125 m@m2, which meet the requirements of UAV’s landing.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391

DOI:10.3788/yjyxs20183303.0238

所属栏目:图像处理

基金项目:国家自然基金资助项目(No. 51675033)

收稿日期:2017-11-10

修改稿日期:2018-01-08

网络出版日期:--

作者单位    点击查看

黄建宇:北京航空航天大学 仪器科学与光电工程学院, 北京 100191
屈玉福:北京航空航天大学 仪器科学与光电工程学院, 北京 100191
姜吉祥:北京机电工程研究所 北京 100074

联系人作者:黄建宇(18806976726@163.com)

备注:黄建宇(1992-), 男, 云南临沧人, 硕士生, 主要从事计算机视觉三维重建方面研究。

【1】MOULON P, MONASSE P, MARLET R. Adaptive structure from motion with a Contrario model estimation [C]//Proceedings of the 11th Asian Conference on Computer Vision. Daejeon, Korea: Springer-Verlag, 2012: 257-270.

【2】FURUKAWA Y, PONCE J. Accurate, dense, and robust multi-view stereopsis [C]//Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN, USA: IEEE, 2007: 1-8.

【3】SHEN S H. Accurate multiple view 3D reconstruction using patch-based stereo for large-scale scenes [J]. IEEE Transactions on Image Processing, 2013, 22(5): 1901-1914.

【4】林义闽, 吕乃光, 娄小平, 等.用于弱纹理场景三维重建的机器人视觉系统 [J].光学 精密工程, 2015, 23(2): 540-549.
LIN Y M, LV N G, LOU X P, et al. Robot vision system for 3D reconstruction in low texture environment [J]. Optics and Precision Engineering, 2015, 23(2): 540-549. (in Chinese)

【5】李劲澎, 姜挺, 肖达, 等.基于关系图的无人机影像三维重建 [J].光学 精密工程, 2016, 24(6): 1501-1509.
LI J P, JIANG T, XIAO D, et al. On diagram-based three-dimensional reconstruction of UAV image [J]. Optics and Precision Engineering, 2016, 24(6): 1501-1509. (in Chinese)

【6】黄大龙.基于单目视觉无人直升机辅助降落的研究 [D].杭州: 浙江大学, 2012.
HUANG D L. Research on unmanned helicopter aided landing based on monocular vision [D]. Hangzhou: Zhejiang University, 2012. (in Chinese)

【7】范保杰.自动目标跟踪与无人机自主降落中的视觉方法研究 [D].沈阳: 中国科学院沈阳自动化研究所, 2011.
FAN B J. The visual method study in automatic object tracking and UAV autonomous landing [D]. Shenyang: Shenyang Institute of Automation Chinese Academy of Sciences, 2011. (in Chinese)

【8】GUO Y L, BENNAMOUN M, SOHEL F, et al. 3D object recognition in cluttered scenes with local surface features: a survey [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(11): 2270-2287.

【9】FROME A, HUBER D, KOLLURI R, et al. Recognizing objects in range data using regional point descriptors [C]//PAJDLA T, MATAS J. Computer Vision-ECCV 2004. Berlin, Heidelberg: Springer, 2004: 224-237.

【10】RUSU R B, HOLZBACH A, BEETZ M, et al. Detecting and segmenting objects for mobile manipulation [C]//Proceedings of the IEEE 12th International Conference on Computer Vision Workshops. Kyoto, Japan: IEEE, 2009: 47-54.

【11】孙杰, 赖祖龙.利用随机森林的城区机载LiDAR数据特征选择与分类 [J].武汉大学学报: 信息科学版, 2014, 39(11): 1310-1313.
SUN J, LAI Z L. Airborne LiDAR feature selection for urban classification using random forests [J]. Geomatics and Information Science of Wuhan University, 2014, 39(11): 1310-1313. (in Chinese)

【12】马鑫, 魏仲慧, 何昕, 等.三维枪弹痕点云数据处理及特征提取研究 [J].液晶与显示, 2016, 31(9): 889-896.
MA X, WEI Z H, HE X, et al. Processing and feature extraction for three-dimensional bullet point cloud data [J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(9): 889-896. (in Chinese)

【13】HIDO S, TSUBOI Y, KASHIMA H, et al. Statistical outlier detection using direct density ratio estimation [J]. Knowledge and Information Systems, 2011, 26(2): 309-336.

【14】DURAND F, DORSEY J. Fast bilateral filtering for the display of high-dynamic-range images [J]. ACM Transactions on Graphics, 2002, 21(3): 257-266.

【15】袁小翠, 吴禄慎, 陈华伟.尖锐特征曲面散乱点云法向估计 [J].光学 精密工程, 2016, 24(10): 2581-2588.
YUAN X C, WU L S, CHEN H W. Normal estimation of scattered point cloud with sharp feature [J]. Optics and Precision Engineering, 2016, 24(10): 2581-2588. (in Chinese)

【16】RUSU R B. Semantic 3D object maps for everyday manipulation in human living environments [J]. KI-Künstliche Intelligenz, 2010, 24(4): 345-348.

【17】FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography [J]. Communications of the ACM, 1981, 24(6): 381-395.

引用该论文

HUANG Jian-yu 1,QU Yu-fu 1*,JIANG Ji-xiang. Method for identifying the landing area of[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(3): 238-244

黄建宇,屈玉福,姜吉祥. 无人飞行器自主降落区识别方法研究[J]. 液晶与显示, 2018, 33(3): 238-244

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF