首页 > 论文 > 光学学报 > 38卷 > 6期(pp:601002--1)

高能固态激光非Kolmogorov湍流大气传输光斑扩展的数值分析

Numerical Analysis of Beam Spreading of High-Power Solid Laser Propagation Through Non-Kolmogorov Turbulent Atmosphere

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用高能激光大气传输四维仿真程序模拟计算了高功率固态激光在非Kolmogorov湍流大气中聚焦传输时的湍流与热晕效应。数值分析了接收平面处光斑的63.2%环围能量半径、光束质量因子随非Kolmogorov湍流谱指数α和传输起伏强度D/r0的变化,比较了非Kolmogorov湍流与Kolmogorov湍流条件下激光传输结果的相对偏差。结果表明:非Kolmogorov湍流谱指数α越小,湍流效应和湍流热晕综合效应导致的光斑扩展越大,光束的能量集中度越低;已建立的描述聚焦高斯光束大气传输光束扩展的定标关系式在非Kolmogorov湍流条件下不再成立;在传输参数条件下,仅考虑湍流效应时,非Kolmogorov湍流与Kolmogorov湍流下光斑半径的相对偏差最大值可达87.7%,存在热晕时的最大相对偏差达43.7%,可见热晕降低了两种情况下传输结果的相对偏差。

Abstract

Four-dimensional atmospheric propagation codes of high-power laser are used to simulate turbulence and thermal blooming effects of a focused solid laser beam propagating through non-Kolmogorov turbulent atmosphere. The variations of 63.2% encircled energy beam radius and beam quality factor with non-Kolmogorov turbulent spectral index α and propagation fluctuated strength D/r0 are analyzed. Deviations of simulation results of laser propagation through non-Kolmogorov turbulence and Kolmogorov turbulence are also compared. Results show that the smaller the spectral index α, the larger the beam spreading and the lower the energy concentration for turbulence effect and combined effect of turbulence and thermal blooming. The existed scaling relation for describing the beam spreading of focused Gaussian beam propagation through atmosphere is no longer valid for non-Kolmogorov turbulent atmosphere. Comparisons show that when considering the turbulence effect only, the largest relative deviation of beam spreading induced by Kolmogorov turbulence and non-Kolmogorov turbulence reaches to 87.7%, however, when considering the thermal blooming effect, the largest relative deviation reduces to 43.7%. It means that thermal blooming reduces the relative deviation of beam spreading of laser propagation in Kolmogorov and non-Kolmogorov turbulence.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436;TN012

DOI:10.3788/aos201838.0601002

所属栏目:大气与海洋光学

基金项目:光电对抗测试评估技术重点实验室开放课题(GKCP2016002)

收稿日期:2017-11-24

修改稿日期:2018-01-11

网络出版日期:--

作者单位    点击查看

李玉杰:中国科学院安徽光学精密机械研究所大气光学重点实验室, 安徽 合肥 230031
钱仙妹:中国科学院安徽光学精密机械研究所大气光学重点实验室, 安徽 合肥 230031
朱文越:中国科学院安徽光学精密机械研究所大气光学重点实验室, 安徽 合肥 230031
苗锡奎:光电对抗测试评估技术重点实验室, 河南 洛阳 471003

联系人作者:朱文越(zhuwenyue@aiofm.ac.cn)

备注:李玉杰(1990-),女,博士,主要从事激光大气传输方面的研究。E-mail: liyujie1017@126.com

【1】Li J M. Development, trend and application of high average power diode pumped lasers[J]. Laser & Optoelectronics Progress, 2008, 45(7): 16-29.
李晋闽. 高平均功率全固态激光器发展现状、趋势及应用[J]. 激光与光电子学进展, 2008, 45(7): 16-29.

【2】Marmo J, Injeyan H, Komine H, et al. Joint high power solid state laser program advancements at Northrop Grumman[C]. SPIE, 2009, 7195: 719507.

【3】Strohbehn J W. Laser beam propagation in the atmosphere[M]. Berlin: Springer-Velag, 1978: 1-3.

【4】Wang Y J, Fan C Y, Wei H L. Laser beam propagation and applications through the atmosphere and sea water[M]. Beijing: National Defense Industry Press, 2015: 207-243.
王英俭, 范承玉, 魏合理. 激光在大气和海水中传输及应用[M]. 北京: 国防工业出版社, 2015: 207-243.

【5】Gebhardt F G. High power laser propagation[J]. Applied Optics, 1976, 15(6): 1479-1493.

【6】Shi X Y, Wang Y J, Huang Y B. Numerical analysis on the uniform focused beam spreading induced by atmosphere turbulence with different obscuring ratio[J]. High Power Laser and Particle Beams, 2003, 15(12): 1181-1183.
石小燕, 王英俭, 黄印博. 发射系统遮挡比对均强聚焦光束光斑扩展的影响[J]. 强激光与粒子束, 2003, 15(12): 1181-1183.

【7】Huang Y B, Wang Y J. Numerical analysis of the scaling laws about focused beam spreading induced by the atmosphere[J]. Acta Physica Sinica, 2006, 55(12): 6715-6719.
黄印博, 王英俭. 聚焦光束大气传输光束扩展定标规律的数值分析[J]. 物理学报, 2006, 55(12): 6715-6719.

【8】Qiao C H, Fan C Y, Huang Y B, et al. Scaling laws of high energy laser propagation through atmosphere[J]. Chinese Journal of Lasers, 2010, 37(2): 433-437.
乔春红, 范承玉, 黄印博, 等. 高能激光大气传输的定标规律[J]. 中国激光, 2010, 37(2): 433-437.

【9】Stribling B E. Laser beam propagation in non-Kolmogorov atmospheric turbulence[D]. Dayton: Air University of United States of America, 1994: 1-89.

【10】Li Y J, Zhu W Y, Qian X M, et al. Simulation of the scintillation index of plane wave propagating through general non-Kolmogorov atmospheric turbulence path[J]. Acta Optica Sinica, 2015, 35(7): 0701004.
李玉杰, 朱文越, 钱仙妹, 等. 一般非Kolmogorov大气湍流路径上平面波闪烁的数值模拟分析[J]. 光学学报, 2015, 35(7): 0701004.

【11】Rao R Z, Li Y J. Light propagation through non-Kolmogorov-type atmospheric turbulence and its effects on optical engineering[J]. Acta Optica Sinica, 2015, 35(5): 0501003.
饶瑞中, 李玉杰. 非Kolmogorov大气湍流中的光传播及其对光电工程的影响[J]. 光学学报, 2015, 35(5): 0501003.

【12】Li Y J, Zhu W Y, Wu X Q, et al. Equivalent refractive-index structure constant of non-Kolmogorov turbulence[J]. Optics Express, 2015, 23(18): 23004-23012.

【13】Mei H P, Wu X Q, Rao R Z. Measurement and analysis of temperature power spectrum scaling exponent in non-Kolmogorov turbulent atmosphere[J]. High Power Laser and Particle Beams, 2006, 18(9): 1423-1427.
梅海平, 吴晓庆, 饶瑞中. 非Kolmogorov大气湍流温度谱标度指数的测量与分析[J]. 强激光与粒子束, 2006, 18(9): 1423-1427.

【14】Wu X Q, Huang Y B, Mei H P, et al. Measurement of non-Kolmogorov turbulence characteristic parameter in atmospheric surface layer[J]. Acta Optica Sinica, 2014, 34(6): 0601001.
吴晓庆, 黄印博, 梅海平, 等. 近地面层大气非Kolmogorov湍流特征参数测量[J]. 光学学报, 2014, 34(6): 0601001.

【15】Charnotskii M. Common omissions and misconceptions of wave propagation in turbulence: discussion[J]. Journal of the Optical Society of America A, 2012, 29(5): 711-721.

【16】Rao R Z. Modern atmospheric optics[M]. Beijing: Science Press, 2012: 485-486.
饶瑞中. 现代大气光学[M]. 北京: 科学出版社, 2012: 382-486.

【17】Toselli I, Andrews L C, Phillips R L, et al. Free space optical system performance for a Gaussian beam propagating through non-Kolmogorov weak turbulence[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(6): 1783-1788.

【18】Andrews L C, Phillips R L, Crabbs R. Propagation of a Gaussian-beam wave in general anisotropic turbulence[C]. SPIE, 2014, 9224: 922402.

【19】Wang Y J, Huang Y B. Analysis of the scaling laws about focused uniform beam spreading induced by real atmosphere[J]. Chinese Journal of Quantum Electronics, 2006, 23(3): 274-281.
王英俭, 黄印博. 聚焦平台光束大气传输光束扩展的定标参数分析[J]. 量子电子学报, 2006, 23(3): 274-281.

引用该论文

Li Yujie,Qian Xianmei,Zhu Wenyue,Miao Xikui. Numerical Analysis of Beam Spreading of High-Power Solid Laser Propagation Through Non-Kolmogorov Turbulent Atmosphere[J]. Acta Optica Sinica, 2018, 38(6): 0601002

李玉杰,钱仙妹,朱文越,苗锡奎. 高能固态激光非Kolmogorov湍流大气传输光斑扩展的数值分析[J]. 光学学报, 2018, 38(6): 0601002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF