首页 > 论文 > 光学学报 > 38卷 > 6期(pp:612001--1)

结构光饱和区域分区投射优化补偿方法

Optimized Compensation Method of Divisional Projection for Saturated Region of Structured Light

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

结构光在三维形貌测量中应用十分广泛,但对于表面反射率较高的物体,对其投影一定强度的结构光,易在被测物表面形成局部亮度饱和,使得该区域在重建过程中出现较大误差甚至无法重建。为了提高表面高反射率物体的三维重建质量,提出了一种基于分区投射的结构光饱和区域主动补偿方法。首先通过投射区域格雷编码灰度图计算饱和区域在投影平面的位置。然后增加过渡补偿区域,平滑降低饱和区域的条纹光栅投射强度。最后,通过实验对饱和区域分区投射优化补偿方法进行了验证。结果表明,所提方法能够减少计算补偿区域所需投影图片的数量,实现饱和区域边界平滑过渡,提高计算效率,有效抑制亮度饱和引起的重建误差,提高三维重建精度。

Abstract

The structured light is widely used in 3D surface shape measurement. However, it is likely to cause the intensity saturation when projecting certain intensity structured light to the surface with high reflection. The intensity saturation always causes the reconstructed surface with large errors and even hard to be reconstructed. In order to improve the quality of 3D reconstruction of high reflective objects, an active compensation method base on light intensity divisional projection is proposed. Firstly, the position of the saturated region in the projection plane is calculated by the Gray code grayscales in the projection area. Then, the transition compensation region is proposed to reduce the projection intensity of the fringe pattern in the saturated region smoothly. Finally, the divisional projection optimized compensation method for saturated region is verified by the experiments. The experimental results show that the proposed method can reduce the number of projected images needed to calculate the compensation region, achieve a smooth transition of the saturated region boundary, improve the computational efficiency, effectively suppress the reconstruction error caused by the saturation, and improve the accuracy of the 3D reconstruction.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN206

DOI:10.3788/aos201838.0612001

所属栏目:仪器,测量与计量

基金项目:国家自然科学基金(51605059)、科技部重点研发计划政府间国际科技创新合作重点专项(2016YFE0113600)、中央高校基本科研业务费项目(106112017CDJPT280006)

收稿日期:2017-12-06

修改稿日期:2018-01-06

网络出版日期:--

作者单位    点击查看

刘飞:重庆大学机械传动国家重点实验室, 重庆 400044
何春桥:重庆大学机械传动国家重点实验室, 重庆 400044
申爱民:成都航空职业技术学院, 四川 成都 610100
李佳鑫:重庆大学机械传动国家重点实验室, 重庆 400044
赖俊霖:重庆大学机械传动国家重点实验室, 重庆 400044

联系人作者:刘飞(fei_liu@cqu.edu.cn)

备注:刘飞(1986-),男,副教授,博士生导师,主要从事机器视觉、机器人及其自动化等方面的研究。E-mail: fei_liu@cqu.edu.cn

【1】Su X Y, Zhang Q C, Chen W J. Three-dimensional imaging based on structured illumination[J]. Chinese Journal of Lasers, 2014, 41(2): 0209001.
苏显渝, 张启灿, 陈文静. 结构光三维成像技术[J]. 中国激光, 2014, 41(2): 0209001.

【2】Chen S L, Xia R B, Zhao J, et al. Analysis and reduction of phase errors caused by nonuniform surface reflectivity in a phase-shifting measurement system[J]. Optical Engineering, 2017, 56(3): 033102.

【3】Liu G H, Liu X Y, Feng Q Y. 3D shape measurement of objects with high dynamic range of surface reflectivity[J]. Applied Optics, 2011, 50(23): 4557-4565.

【4】Jiang H Z, Zhao H J, Li X D. High dynamic range fringe acquisition: a novel 3-D scanning technique for high-reflective surfaces[J]. Optics and Lasers in Engineering, 2012, 50(10): 1484-1493.

【5】Kowarschik R, Kühmstedt P, Geber J, et al. Adaptive optical three-dimensional measurement with structured light[J]. Optical Engineering, 2000, 39(1): 150-158.

【6】Lin H, Song Z. 3D reconstruction of specular surface via a novel structured light approach[C]. IEEE International Conference on Information and Automation, 2015: 530-534.

【7】Song Z, Jiang H L, Lin H B, et al. A high dynamic range structured light means for the 3D measurement of specular surface[J]. Optics and Lasers in Engineering, 2017, 95: 8-16.

【8】Xing W, Zhang F M, Feng W, et al. Three-dimensional measurement method of objects with specular surface besed on digital micromirror device[J]. Acta Optica Sinica, 2017, 37(12): 1212002.
邢威, 张福民, 冯维, 等. 基于数字微镜器件的高光面物体三维测量方法[J]. 光学学报, 2017, 37(12): 1212002.

【9】Waddington C, Kofman J. Saturation avoidance by adaptive fringe projection in phase-shifting 3D surface-shape measurement[C]. IEEE International Symposium on Optomechatronic Technologies, 2010(38): 1-4.

【10】Waddington C, Kofman J. Camera-independent saturation avoidance in measuring high-reflectivity-variation surfaces using pixel-wise composed images from projected patterns of different maximum gray level[J]. Optics Communications, 2014, 333: 32-37.

【11】Feng S J, Zhang Y Z, Chen Q, et al. General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique[J]. Optics and Lasers in Engineering, 2014, 59: 56-71.

【12】Waddington C, Kofman J. Modified sinusoidal fringe-pattern projection for variable illuminance in phase-shifting three-dimensional surface-shape metrology[J]. Optical Engineering, 2014, 53(8): 084109.

【13】Li D, Kofman J. Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement[J]. Optics Express, 2014, 22(8): 9887-9901.

【14】Zuo C, Huang L, Zhang M, et al. Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review[J]. Optics and Lasers in Engineering, 2016, 85: 84-103.

【15】Chen S L, Zhao J B, Xia R B. Improvement of the phase unwrapping method based on multi-frequency heterodyne principle[J]. Acta Optica Sinica, 2016, 36(4): 0412004.
陈松林, 赵吉宾, 夏仁波. 多频外差原理相位解包裹方法的改进[J]. 光学学报, 2016, 36(4): 0412004.

【16】Liu K, Wang Y, Lau D L, et al. Gamma model and its analysis for phase measuring profilometry[J]. Journal of the Optical Society of America A, 2010, 27(3): 553-562.

【17】Zheng D L, Da F P. Gamma correction method for accuracy enhancement in grating projection profilometry[J]. Acta Optica Sinica, 2011, 31(5): 0512003.
郑东亮, 达飞鹏. 提高数字光栅投影测量系统精度的Gamma校正技术[J]. 光学学报, 2011, 31(5): 0512003.

【18】Zhang X, Zhu L M. Phase error model from Gamma distortion and Gamma calibration[J]. Acta Optica Sinica, 2012, 32(4): 0412006.
张旭, 朱利民. Gamma畸变的相位误差模型与Gamma标定技术[J]. 光学学报, 2012, 32(4): 0412006.

【19】Cui Y J, Zhang W F, Li J X, et al. A method of Gamma correction in fringe projection measurement[J]. Acta Optica Sinica, 2015, 35(1): 0112002.
崔艳军, 张文峰, 李建欣, 等. 条纹投影三维测量的Gamma畸变校正方法[J]. 光学学报, 2015, 35(1): 0112002.

【20】Waddington C, Kofman J. Analysis of measurement sensitivity to illuminance and fringe-pattern gray levels for fringe-pattern projection adaptive to ambient lighting[J]. Optics and Lasers in Engineering, 2010, 48(2): 251-256.

【21】Li Z W, Shi Y S, Zhong K, et al. Projector calibration algorithm for the structured light measurement technique[J]. Acta Optica Sinica, 2009, 29(11): 3061-3065.
李中伟, 史玉升, 钟凯, 等. 结构光测量技术中的投影仪标定算法[J]. 光学学报, 2009, 29(11): 3061-3065.

【22】Xie Z X, Chi S K, Wang X M, et al. Calibration method for structure-light auto-scanning measurement system based on coplanarity[J]. Chinese Journal of Lasers, 2016, 43(3): 0308003.
解则晓, 迟书凯, 王晓敏, 等. 基于共面法的结构光自扫描测量系统参数标定方法[J]. 中国激光, 2016, 43(3): 0308003.

引用该论文

Liu Fei,He Chunqiao,Shen Aimin,Li Jiaxin,Lai Junlin. Optimized Compensation Method of Divisional Projection for Saturated Region of Structured Light[J]. Acta Optica Sinica, 2018, 38(6): 0612001

刘飞,何春桥,申爱民,李佳鑫,赖俊霖. 结构光饱和区域分区投射优化补偿方法[J]. 光学学报, 2018, 38(6): 0612001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF