首页 > 论文 > 光学学报 > 38卷 > 6期(pp:601004--1)

相位屏法模拟高斯阵列光束海洋湍流传输特性

Propagation Properties of Gaussian Array Beams Transmitted in Oceanic Turbulence Simulated by Phase Screen Method

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于功率谱反演法产生海洋湍流相位屏,对多次传输过程进行统计平均,仿真分析不同海洋湍流参量下不同高斯阵列光束(矩形分布、径向分布及单束)长曝光光斑半径、光斑质心漂移特性及光强闪烁特性。结果表明:光束长曝光光斑半径、光斑质心漂移标准差及轴上闪烁系数均随湍流效应(湍流强度或传输距离)的增强而增大;同时,阵列光束与单束高斯光的光斑半径趋于一致,当传输距离继续增大时,单束高斯光束长曝光光斑半径略大。相对于单束高斯光,阵列光束在相同湍流条件下具有更小的漂移标准差,但轴上闪烁系数较大。相对于大气湍流而言,海洋湍流具有较强的闪烁效应。

Abstract

Based on the power spectrum inversion method to produce oceanic turbulence phase screen, the long-exposure beam radius, spot centroid wander features and irradiance scintillation features of different beam arrays (rectangle, radial, single beams) in different oceanic turbulence conditions are simulated and analyzed. Results show that long-exposure beam radius, standard deviation of spot centroid wander and on-axis scintillation index of array beams increase with increasing of turbulent effects. Simultaneously, the long-exposure beam radius of the beam array is tending to be equivalent with that of the single Gaussian beam. However, after a longer distance propagation, the radius of single beam is slightly larger than the array beam radius. Compared to a single beam, beam arrays have smaller wander standard deviation under the same turbulence conditions but larger scintillation index. The scintillation in oceanic turbulence is stronger than in the atmospheric turbulence.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN249

DOI:10.3788/aos201838.0601004

所属栏目:大气与海洋光学

基金项目:中央高校基本科研业务费专项资金(XJS17095)、高等学校学科创新引智计划(B17035)

收稿日期:2017-12-12

修改稿日期:2018-01-19

网络出版日期:--

作者单位    点击查看

牛超君:西安电子科技大学物理与光电工程学院, 陕西 西安 710071
卢芳:西安电子科技大学物理与光电工程学院, 陕西 西安 710071
韩香娥:西安电子科技大学物理与光电工程学院, 陕西 西安 710071

联系人作者:韩香娥(xehan@mail.xidian.edu.cn)

备注:牛超君(1991-), 女, 博士研究生, 主要从事大气传输特性及自适应光学方面的研究。 E-mail: niuchaojun123@163.com

【1】Xiao X, Voelz D G, Toselli I, et al. Gaussian beam propagation in anisotropic turbulence along horizontal links: theory, simulation, and laboratory implementation[J]. Applied Optics, 2016, 55(15): 4079-4084.

【2】Qian X M, Zhu W Y, Huang Y B, et al. Selection of computing parameters in numerical simulation of laser beam propagation in turbulent atmosphere[J]. Acta Photonica Sinica, 2008, 37(10): 1986-1992.
钱仙妹, 朱文越, 黄印博, 等. 激光湍流大气传输数值模拟中的计算参数选取[J]. 光子学报, 2008, 37(10): 1986-1992.

【3】Xu G Y, Wu J, Yang C P, et al. Simulation and optical scintillation research of Gaussian beam in atmospheric turbulence[J]. Laser Technology, 2008, 32(5): 548-551.
徐光勇, 吴健, 杨春平, 等. 高斯光束在大气湍流中的数值模拟和光强起伏[J]. 激光技术, 2008, 32(5): 548-551.

【4】Lachinova S L, Vorontsov M A. Giant irradiance spikes in laser beam propagation in volume turbulence: analysis and impact[J]. Journal of Optics, 2016, 18(2): 025608.

【5】Yang T X, Zhao S M. Random phase screen model of ocean turbulence[J]. Acta Optica Sinica, 2017, 37(12): 1201001.
杨天星, 赵生妹. 海洋湍流随机相位屏模型[J]. 光学学报, 2017, 37(12): 1201001.

【6】Rao R Z. Light propagation in the turbulent atmosphere[M]. Hefei: Anhui Science and Technology Press, 2005: 95-102.
饶瑞中. 光在湍流大气中的传播[M]. 合肥: 安徽科学技术出版社, 2005: 95-102.

【7】Nikishov V V, Nikishov V I. Spectrum of turbulent fluctuations of the sea-water refraction index[J]. International Journal of Fluid Mechanics Research, 2000, 27(1): 82-98.

【8】Voelz D G, Roggemann M C. Digital simulation of scalar optical diffraction: revisiting chirp function sampling criteria and consequences[J]. Applied Optics, 2009, 48(32): 6132-6142.

【9】Andrews L C, Phillips R L. Laser beam propagation through random media[M]. Bellingham, WA: SPIE Press, 2005: 647-666.

【10】Ata Y, Baykal Y. Scintillations of optical plane and spherical waves in underwater turbulence[J]. Journal of the Optical Society of America A, 2014, 31(7): 1552-1556.

【11】Wang Z Q, Zhang P F, Qiao C H, et al. Scintillation index of Gaussian waves in weak turbulent ocean[J]. Optics Communications, 2016, 380: 79-86.

引用该论文

Niu Chaojun,Lu Fang,Han Xiang′e. Propagation Properties of Gaussian Array Beams Transmitted in Oceanic Turbulence Simulated by Phase Screen Method[J]. Acta Optica Sinica, 2018, 38(6): 0601004

牛超君,卢芳,韩香娥. 相位屏法模拟高斯阵列光束海洋湍流传输特性[J]. 光学学报, 2018, 38(6): 0601004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF