首页 > 论文 > 光学学报 > 38卷 > 6期(pp:606007--1)

U型缠绕式光纤弯曲损耗位移传感器设计

Design of Displacement Sensor Based on the Bending Loss of U-Type Wingding Fiber

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对传统光纤弯曲损耗位移传感器中位移与弯曲损耗的非线性关系,且高灵敏度和大量程不能兼得的问题,设计了一种U型缠绕式光纤弯曲损耗位移传感器,结构包括U型回绕和螺旋绕轴,两者合称为U型缠绕。理论证明被测位移量与光纤弯曲损耗之间的线性关系,推导出表达式,讨论了螺旋绕轴方式对光纤弯曲半径的影响和U型回绕方式对传感器精度的影响,并进行了一系列实验研究和性能测试。结果表明:传感器的测量范围为0~120 mm,灵敏度为0.14 dB/mm,线性相关系数大于0.99,光纤在U型缠绕中无应力松弛的现象,建议U型回绕光纤曲率半径大于6 mm。U型缠绕式光纤弯曲损耗位移传感器具有良好的测量精度和较大量程,能够实现传感器对混凝土结构的裂缝监测和大型结构位移的连续监测。

Abstract

In view of the nonlinear relationship between displacement and bending loss in traditional fiber bending loss displacement sensor, and the problem that high sensitivity and large scale cannot be obtained at the same time, we design a novel displacement sensor based on the bending loss of U-type winding fiber. The fiber consists of a U-type turning and a spiral winding around the shaft, which of them are called U-type winding. It is proved theoretically that there is a linear relationship between the measured displacement and the bending loss. We deduce the expression of them, discuss the effect of spiral winding on the bending radius of fiber and the effect of U-type turning on the accuracy of the sensor, and carry out a series of experimental studies and performance tests. Experimental results demonstrate that displacement sensitivity of the sensor is 0.14 dB/mm in the range from 0 to 120 mm, and the linear correlation coefficient is greater than 0.99. There is no stress relaxation of the optical fiber in the winding process. It is suggested that the radius of curvature of the U-type turning fiber should be larger than 6 mm. The displacement sensor based on the bending loss of U-type winding fiber has good measurement precision and large scale. It can realize the monitoring of concrete structure cracks and continuous monitoring of the displacement of large structure.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP212

DOI:10.3788/aos201838.0606007

所属栏目:光纤光学与光通信

基金项目:国家自然科学基金(51409205)、中国博士后自然科学基金(2015M572656XB)、陕西省博士后自然科学基金、水文水资源与水利工程科学国家重点实验室开放研究基金(2014491011)

收稿日期:2017-12-14

修改稿日期:2018-01-23

网络出版日期:--

作者单位    点击查看

李明昊:省部共建西北旱区生态水利国家重点实验室, 陕西 西安 710048西安理工大学水利水电学院, 陕西 西安 710048
程琳:省部共建西北旱区生态水利国家重点实验室, 陕西 西安 710048西安理工大学水利水电学院, 陕西 西安 710048
李亚明:省部共建西北旱区生态水利国家重点实验室, 陕西 西安 710048西安理工大学水利水电学院, 陕西 西安 710048
马钰明:省部共建西北旱区生态水利国家重点实验室, 陕西 西安 710048西安理工大学水利水电学院, 陕西 西安 710048
杨杰:省部共建西北旱区生态水利国家重点实验室, 陕西 西安 710048西安理工大学水利水电学院, 陕西 西安 710048

联系人作者:程琳(wanmu2381@163.com)

备注:李明昊(1998─),男,本科生,主要从事水利水电工程方面的研究。E-mail: 1525784658@qq.com

【1】Xie T, Wang X, Li C, et al. Fiber Bragg grating differential tilt sensor based on mercury column structure[J]. Acta Optica Sinica, 2017, 37(3): 0306002.
谢涛, 王行, 李川, 等. 水银柱活塞差动式光纤布拉格光栅倾角传感器[J]. 光学学报, 2017, 37(3): 0306002.

【2】Wang Y, Wang M, Xia W, et al. Optical fiber Bragg grating pressure sensor based on dual-frequency optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 2017, 29(21): 1864-1867.

【3】Tang B, Huang J B, Gu H C. Structural design of distributed feedback fiber laser accelerometer sensors[J]. Chinese Journal of Lasers, 2017, 44(10): 1010002.
唐波, 黄俊斌, 顾宏灿. 分布反馈式光纤激光加速度传感器结构设计[J]. 中国激光, 2017, 44(10): 1010002.

【4】Luo B B, Zou W G, Zhao M F, et al. pH sensor on fiber grating with extremely large tilt angle and its sensitivity enhancement[J]. Acta Optica Sinica, 2017, 37(1): 0106009.
罗彬彬, 邹文根, 赵明富, 等. 极大倾斜角度光纤光栅pH值传感器及其增敏研究[J]. 光学学报, 2017, 37(1): 0106009.

【5】Rizzolo S, Sabatier C, Boukenter A, et al. Radiation characterization of optical frequency domain reflectometry fiber-based distributed sensors[J]. IEEE Transactions on Nuclear Science, 2016, 63(3): 1688-1693.

【6】Liang S, Liu T F, Sheng X Z, et al. Investigation on space-domain difference based location method for φ-OTDR fiber-optic distributed disturbance sensor[J]. Infrared and Laser Engineering, 2016, 45(6): 253-257.
梁生, 刘腾飞, 盛新志, 等. 基于空间域差分的φ-OTDR光纤分布式扰动传感器定位方法研究[J]. 红外与激光工程, 2016, 45(6): 253-257.

【7】Zou D B, Liu H, Zhao L, et al. Research of signal recognition of distributed optical fiber vibration sensors[J]. Laser Technology, 2016, 40(1): 86-89.
邹东伯, 刘海, 赵亮, 等. 分布式光纤振动传感信号识别的研究[J]. 激光技术, 2016, 40(1): 86-89.

【8】Wang H P, Xiang P. Optimization design of optical fiber sensors based on strain transfer theory[J]. Optics and Precision Engineering, 2016, 24(6): 1233-1241.
王花平, 向平. 基于应变传递理论的光纤传感器优化设计[J]. 光学 精密工程, 2016, 24(6): 1233-1241.

【9】Cha G Z, Zheng X H. High sensitivity optic fiber torsion sensor[J]. Automation & Instrumentation, 2016, 31(1): 23-25, 58.
茶国智, 郑晓虹. 高灵敏度光纤扭转传感器[J]. 自动化与仪表, 2016, 31(1): 23-25, 58.

【10】Zhang K Y, Yan G, Lu L D, et al. Study on the sensing performance of pre-stretching fiber grating strain sensor[J]. Piezoelectrics & Acoustooptics, 2017, 39(5): 654-658.
张开宇, 闫光, 鹿利单, 等. 预拉伸光纤光栅应变传感器传感性能研究[J]. 压电与声光, 2017, 39(5): 654-658.

【11】Zhao L, Jiang L, Li L Q. An optical fiber grating pressure sensor with composition structure[J]. Piezoelectrics & Acoustooptics, 2017, 39(1): 60-62, 66.
赵林, 姜龙, 李连庆. 一种组合结构光纤光栅压力传感器[J]. 压电与声光, 2017, 39(1): 60-62,66.

【12】Ding X P, Wang W, Fu L C. Classification and application principles of optical-fibre transducer[J]. Spectroscopy and Spectral Analysis, 2006, 26(6): 1176-1178.
丁小平, 王薇, 付连春. 光纤传感器的分类及其应用原理[J]. 光谱学与光谱分析, 2006, 26(6): 1176-1178.

【13】Zhou Q, Feng G Y, Li X D, et al. Theoretical analysis and measurement on the character of bending loss in fiber[J]. Optics and Optoelectronic Technology, 2008, 6(4): 32-35.
周情, 冯国英, 李小东, 等. 光纤弯曲损耗特性的理论与实验研究[J]. 光学与光电技术, 2008, 6(4): 32-35.

【14】Marcatili E A J, Miller S E. Improved relations describing directional control in electromagnetic wave guidance[J]. Bell Labs Technical Journal, 1969, 48(7): 2161-2188.

【15】Leung C K Y, Elvin N, Olson N, et al. A novel distributed optical crack sensor for concrete structures[J]. Engineering Fracture Mechanics, 2000, 65: 133-148.

【16】Higuchi K, Nagatomo S, Yamazaki N, et al. Measurement of Ground Displacement using Optical Fiber Ring Interferometer[J]. Proceedings of the Japan National Conference on Geotechnical Engineering, 2003, 38: 2131-3132.

【17】Luo Z H, Chen C. Study and application of broad dynamic range distributed optical fiber sensor[J]. Journal of Optoelectronics·Laser, 2010, 21(6): 851-855.
罗志会, 陈池. 大量程分布式光纤传感器的研究与应用[J]. 光电子·激光, 2010, 21(6): 851-855.

【18】Bao T F, Zhao J L, Yan P L, et al. A novel cracking sensing fiber sensor with wide range[J]. Scientia Sinica(Technologica), 2015, 45(9): 984-990.
包腾飞, 赵津磊, 阎培林, 等. 一种新型大量程裂缝光纤传感器[J]. 中国科学: 技术科学, 2015, 45(9): 984-990.

【19】Gambling W A, Matsumura H, Ragdale C M. Curvature and microbending losses in single-mode optical fibres[J]. Opticaland Quantum Electronics, 1979, 11(1): 43-59.

【20】Xue M C. Research and measurement of optical fibre macrobend loss[J]. Telecommunications Science, 2009, 25(7): 57-62.
薛梦驰. 光纤弯曲损耗的研究与测试[J]. 电信科学, 2009, 25(7): 57-62.

【21】Tsai K H, Kim K S, Morse T F. General solutions for stress-induced polarization in optical fibers[J]. Journal of Lightwave Technology, 1991, 9(1): 7-17.

引用该论文

Li Minghao,Cheng Lin,Li Yaming,Ma Yuming,Yang Jie. Design of Displacement Sensor Based on the Bending Loss of U-Type Wingding Fiber[J]. Acta Optica Sinica, 2018, 38(6): 0606007

李明昊,程琳,李亚明,马钰明,杨杰. U型缠绕式光纤弯曲损耗位移传感器设计[J]. 光学学报, 2018, 38(6): 0606007

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF