首页 > 论文 > 光学学报 > 38卷 > 6期(pp:605001--1)

基于远场干涉的扫描干涉场曝光光学系统设计与分析

Design and Analysis of Scanning Beam Interference Lithography Optical System Based on Far-Field Interference

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

高斯光在远离束腰位置能得到直线度极高的干涉条纹,基于此提出了一种基于远场干涉的新型扫描干涉场曝光(SBIL)系统。建立了条纹相位非线性误差关于高斯光束腰半径、入射角度及束腰到基底距离的解析表达式。通过数值仿真,详细分析了条纹相位非线性误差与上述参数的关系。研究结果表明,该光学系统可以有效地将条纹相位非线性误差限制在纳米量级,并具有光路简洁、装调误差宽容度较高的优点。适当缩短束腰到基底的距离,可有效解决曝光光斑边界处条纹相位非线性误差恶化的问题。

Abstract

Extremely straight interference fringes can be formed at the position far away from the waist of Gaussian beams and based on this principle, a novel far-field-interference-based scanning beam interference lithography (SBIL) optical system is proposed. The analytic expression of the nonlinear error with respect to waist radius of Gaussian beams, the incident angle and the waist-to-substrate distance is established. By the numerical simulation, the relationships between the nonlinear error of fringes and the above parameters are analyzed in detail. The research results show that this optical system can effectively limit the nonlinear error of fringe phase to the nanometer scale, and possesses the advantages of simple optical path and high tolerance of assembly errors. The problem that the nonlinear error of fringes at the boundary of the exposure spot is deteriorated can be effectively solved if the waist-to-substrate distance is suitably shortened.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O436.1

DOI:10.3788/aos201838.0605001

所属栏目:衍射与光栅

基金项目:国家科技重大专项(2012ZX02702-006)

收稿日期:2017-12-14

修改稿日期:2018-01-30

网络出版日期:--

作者单位    点击查看

鲁森:清华大学机械工程系摩擦学国家重点实验室, 北京 100084清华大学机械工程系精密超精密制造装备及控制北京市重点实验室, 北京 100084
杨开明:清华大学机械工程系摩擦学国家重点实验室, 北京 100084清华大学机械工程系精密超精密制造装备及控制北京市重点实验室, 北京 100084
朱煜:清华大学机械工程系摩擦学国家重点实验室, 北京 100084清华大学机械工程系精密超精密制造装备及控制北京市重点实验室, 北京 100084
王磊杰:清华大学机械工程系摩擦学国家重点实验室, 北京 100084清华大学机械工程系精密超精密制造装备及控制北京市重点实验室, 北京 100084
张鸣:清华大学机械工程系摩擦学国家重点实验室, 北京 100084清华大学机械工程系精密超精密制造装备及控制北京市重点实验室, 北京 100084

联系人作者:杨开明(yangkm@tsinghua.edu.cn)

备注:鲁森(1987-),男,博士研究生,主要从事扫描干涉光刻系统方面的研究。E-mail: lus13@mails.tsinghua.edu.cn

【1】Schattenburg M L, Chen C, Everett P N, et al. Sub-100 nm metrology using interferometrically produced fiducials[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1999, 17(6): 2692-2697.

【2】Konkola P T. Design and analysis of a scanning beam interference lithography system for patterning gratings with nanometer-level distortions[D]. Cambridge: Massachusetts Institute of Technology, 2003: 31-32.

【3】Pati G S, Heilmann R K, Konkola P T, et al. Generalized scanning beam interference lithography system for patterning gratings with variable period progressions[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2002, 20(6): 2617-2621.

【4】Chen C G, Konkola P T, Heilmann R K, et al. Nanometer-accurate grating fabrication with scanning beam interference lithography[C]. SPIE, 2002, 4936: 126-134.

【5】Wang L J. Research on the phase-shifting locking technology for scanning interference lithography with nanometer accuracy[D]. Beijing: Tsinghua University, 2016: 11-12.
王磊杰. 扫描干涉光刻纳米精度移相锁定技术研究[D]. 北京: 清华大学, 2016: 11-12.

【6】Chen C G, Konkola P T, Heilmann R K, et al. Image metrology and system controls for scanning beam interference lithography[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2001, 19(6): 2335-2341.

【7】Chen C G. Beam alignment and image metrology for scanning beam interference lithography: fabricating gratings with nanometer phase accuracy[D]. Cambridge: Massachusetts Institute of Technology, 2003: 58-61.

【8】Jiang S. Study on measurement and adjustment of interference fringe for scanning beam interference lithography system[D]. Beijing: University of Chinese Academy of Sciences, 2015: 21-23.
姜珊. 扫描干涉场曝光系统干涉条纹测量与调整方法研究[D]. 北京: 中国科学院大学, 2015: 21-23.

【9】Han J, Bayanheshig, Li W H. The ratio choice method of the pinhole aperture to the waist of the Gaussian laser in the fabrication of holographic gratings[J]. Acta Physica Sinica, 2012, 61(8): 084202.
韩建, 巴音贺希格, 李文昊. 全息光栅曝光系统中空间滤波器孔径与激光束腰关系的选择方法[J]. 物理学报, 2012, 61(8): 084202.

【10】Siegman A E. Lasers[M]. Mill Valley: University Science Books, 1986: 663.

【11】Ferrera J, Schattenburg M L, Smith H I. Analysis of distortion in interferometric lithography[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1996, 14(6): 4009-4013.

【12】Ferrera J. Nanometer-scale placement in electron-beam lithography[D]. Cambridge: Massachusetts Institute of Technology, 2000: 49-55.

【13】Lu S, Yang K M, Zhu Y, et al. Interference fringe phase locking system[J]. Optics and Precision Engineering, 2017, 25(1): 1-7.
鲁森, 杨开明, 朱煜, 等. 干涉条纹相位锁定系统[J]. 光学 精密工程, 2017, 25(1): 1-7.

【14】Mahajan V N. Axial irradiance and optimum focusing of laser beams[J]. Applied optics, 1983, 22(19): 3042-3053.

【15】Mahajan V N. Optical imaging and aberrations, part II: Wave diffraction optics[M]. Bellingham: SPIE Press, 2011: 5-10.

【16】Dickson L D. Characteristics of a propagating Gaussian beam[J]. Applied Optics, 1970, 9(8): 1854-1861.

【17】Belland P, Crenn J P. Changes in the characteristics of a Gaussian beam weakly diffracted by a circular aperture[J]. Applied Optics, 1982, 21(3): 522-527.

【18】Wang W, Jiang S, Song Y, et al. Design of spot size and optical path in scanning beam interference lithography system[J]. Chinese Journal of Lasers, 2017, 44(9): 0905002.
王玮, 姜珊, 宋莹, 等. 扫描干涉场曝光系统光斑尺寸与光路设计[J]. 中国激光, 2017, 44(9): 0905002.

引用该论文

Lu Sen,Yang Kaiming,Zhu Yu,Wang Leijie,Zhang Ming. Design and Analysis of Scanning Beam Interference Lithography Optical System Based on Far-Field Interference[J]. Acta Optica Sinica, 2018, 38(6): 0605001

鲁森,杨开明,朱煜,王磊杰,张鸣. 基于远场干涉的扫描干涉场曝光光学系统设计与分析[J]. 光学学报, 2018, 38(6): 0605001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF