首页 > 论文 > 激光与光电子学进展 > 55卷 > 6期(pp:61408--1)

基于Push-Pull调制的分布反馈激光器带宽研究

Bandwidth of Push-Pull Modulated Distributed Feedback Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为提高分布式反馈(DFB)激光器小信号曲线的通带平坦度和3 dB带宽, 利用一维行波模型, 研究了一阶和二阶光栅结构下基于push-pull调制原理的DFB激光器, 分析了器件参数(如光栅耦合系数、腔长、电极比例等)与激光器频率响应的关系。其中, 仿真模型所用的参数是与实际器件的光电特性对照后提取出来的参数。仿真结果表明:对于一阶光栅结构的DFB激光器, 在合适的光栅耦合系数、腔长和电极比例下, push-pull调制的带宽比单电极直接调制的带宽大12 GHz;对于二阶光栅结构的DFB激光器, 在合适的参数下, push-pull调制的带宽比单电极直接调制的带宽大40 GHz;并且, 一阶和二阶光栅结构的push-pull调制激光器的通带平坦度都优于普通的直接调制激光器。同时, 实验结果也表明, 即使对于普通的有源区设计, 采用push-pull调制技术后, 其带宽也会大幅提升。

Abstract

In order to improve the passband flatness and 3 dB modulation bandwidth of the distributed feedback (DFB) lasers, we study the relationship between the device parameters (such as grating coupling coefficient, cavity length and electrode ratio) and the frequency response of 1st and 2nd order grating push-pull modulated DFB lasers by using one-dimensional traveling wave model. The parameters used in the simulated model are extracted from the photoelectric characteristics of the actual devices. The simulated results show that, for the DFB lasers with 1st order grating structure, the push-pull modulation bandwidth is 12 GHz larger than the single-electrode direct modulation bandwidth at the appropriate grating coupling coefficient, cavity length and electrode ratio. For the DFB lasers with 2nd order grating structure, the push-pull modulation bandwidth is 40 GHz larger than the single-electrode direct modulation bandwidth. Besides, the passband flatness of the 1st order and 2nd order grating push-pull modulated lasers is much better than that of the ordinary direct modulation lasers. In addition, the results of the experiments show a substantial increase of the bandwidth with push-pull modulation, even for general design of active region.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248.4

DOI:10.3788/lop55.061408

所属栏目:激光器与激光光学

收稿日期:2017-11-24

修改稿日期:2017-12-26

网络出版日期:--

作者单位    点击查看

周宁:武汉光迅科技股份有限公司, 湖北 武汉 430074
左成亮:华中科技大学武汉光电国家实验室, 湖北 武汉 430074
林泽锟:华中科技大学武汉光电国家实验室, 湖北 武汉 430074
兰明文:华中科技大学武汉光电国家实验室, 湖北 武汉 430074
董智星:华中科技大学武汉光电国家实验室, 湖北 武汉 430074
柯程:华中科技大学武汉光电国家实验室, 湖北 武汉 430074
齐俊秋:华中科技大学武汉光电国家实验室, 湖北 武汉 430074

联系人作者:左成亮(zuochengliang@hust.edu.cn)

备注:周宁(1963-) , 女, 学士, 高级工程师, 主要从事半导体光电器件研发与制造方面的研究。E-mail: ning.zhou@accelink.com

【1】Zhou D B, Bian J, An X, et al. 25 Gb/s electroabsorption modulator monolithically integrated with distributed feedback laser[J]. Acta Optica Sinica, 2015, 35(s1): s114001.
周代兵, 边静, 安欣, 等. 25 Gb/s单片集成电吸收调制分布反馈激光器[J]. 光学学报, 2015, 35(s1): s114001.

【2】Chen X, Zhao J Y, Zhou N, et al. Research of distributed feedback laser array using as ONU light sources based on nanoimprint lithography[J]. Acta Optica Sinica, 2014, 34(11): 1113001.
陈鑫, 赵建宜, 周宁, 等. 基于纳米压印技术分布反馈激光器阵列的ONU光源研究[J]. 光学学报, 2014, 34(11): 1113001.

【3】Radziunas M, Glitzky A, Bandelow U, et al. Improving the modulation bandwidth in semiconductor lasers by passive feedback[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(1): 136-142.

【4】Matsui Y, Pham T, Sudo T, et al. 112-Gb/s WDM link using two directly modulated Al-MQW BH DFB lasers at 56 Gb/s[C]∥Optical Fiber Communication Conference & Exhibition. Los Angeles, CA, USA, 2015: 15216450.

【5】Hayashi I, Panish M, Foy P. A low-threshold room-temperature injection laser[J]. IEEE Journal of Quantum Electronics, 1969, 5(4): 211-212.

【6】Marcenac D D, Nowell M C, Carroll J E. Theory of enhanced amplitude modulation bandwidth in push-pull modulated DFB lasers[J]. IEEE Photonics Technology Letters, 1994, 6(11): 1309-1311.

【7】Chen J, Maciejko R, Makino T. Dynamic properties of push-pull DFB semiconductor lasers[J]. IEEE Journal of Quantum Electronics, 1996, 32(12): 2156-2165.

【8】Xi Y P, Li X, Huang W P. Time-domain standing-wave approach based on cold cavity modes for simulation of DFB lasers[J]. IEEE Journal of Quantum Electronics, 2008, 44(10): 931-937.

【9】Li X. Optoelectronic devices: design, modeling, and simulation[M]. New York: Cambridge University Press, 2009.

【10】Zhou N, Li L S, Cao M D, et al. Lasing mode stability in nano-imprinted quarter-wavelength phase-shifted distributed feedback laser diodes[J]. Laser & Optoelectronics Progress, 2011, 48(1): 011401.
周宁, 李林松, 曹明德, 等. 纳米压印λ/4相移分布反馈激光器的单模稳定性[J]. 激光与光电子学进展, 2011, 48(1): 011401.

【11】Kim B S, Chung Y, Lee J S. An efficient split-step time-domain dynamic modeling of DFB/DBR laser diodes[J]. IEEE Journal of Quantum Electronics, 2002, 36(7): 787-794.

【12】Xi Y P, Huang W P, Li X. High-order split-step schemes for time-dependent coupled-wave equations[J]. IEEE Journal of Quantum Electronics, 2007, 43(5): 419-425.

【13】Qi J Q, Xi Y P, Li X. Enhanced modulation bandwidth by exploiting photon resonance in push-pull modulated DFB lasers[C]∥International Conference on Numerical Simulation of Optoelectronic Devices, Taipei, Taiwan, China, 2015: 127-128.

引用该论文

Zhou Ning,Zuo Chengliang,Lin Zekun,Lan Mingwen,Dong Zhixing,Ke Cheng,Qi Junqiu. Bandwidth of Push-Pull Modulated Distributed Feedback Lasers[J]. Laser & Optoelectronics Progress, 2018, 55(6): 061408

周宁,左成亮,林泽锟,兰明文,董智星,柯程,齐俊秋. 基于Push-Pull调制的分布反馈激光器带宽研究[J]. 激光与光电子学进展, 2018, 55(6): 061408

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF