首页 > 论文 > 激光与光电子学进展 > 55卷 > 6期(pp:61406--1)

光纤激光器辐照性能实验研究

Experimental Study on Radiation Performance of Fiber Lasers

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对高功率光纤激光器的空间应用, 采用976 nm和915 nm两种波段作为抽运源的光纤激光器进行辐照实验, 采用的有源光纤均为20/400 μm掺镱光纤, 输出功率分别为32.68 W和32.04 W。辐照源为Co60源γ射线, 总辐照剂量为12.4 krad, 辐照后976 nm和915 nm抽运光纤激光器输出功率分别降至20.09 W和5.63 W。研究结果表明, 976 nm抽运光纤激光器抗辐照性能优于915 nm抽运光纤激光器。另外, 采用无源器件, 如光纤合束器和包层光剥离器进行辐照实验, 结果发现辐照后光纤合束器耦合效率降低, 包层光剥离器的剥离度增大, 故辐照对无源器件也有影响。

Abstract

For the space applications of high-power fiber lasers, we experimentally investigate the radiation performance of fiber lasers in radiation environment. The two fiber lasers, pumped at different wavelengths of 976 nm and 915 nm , are used with a same kind of 20/400 μm Yb-doped gain fiber in the experiment. After 12.4-krad irradiation by the γ ray produced by Co60, the laser output powers of the 976-nm-pumped and 915-nm-pumped fiber lasers decay from 32.68 W and 32.04 W to 20.09 W and 5.63 W, respectively. The results show that the 976-nm-pumped fiber lasers are more radiation-resistant than the 915-nm-pumped fiber lasers. In addition, passive fiber devices, such as fiber combiners and cladding strippers, are used for irradiation experiments. After the irradiation, the coupling efficiency of fiber combiner is reduced, and the stripping degree of cladding stripper is increased. It is shown that irradiation has an effect on passive fiber devices.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248

DOI:10.3788/lop55.061406

所属栏目:激光器与激光光学

收稿日期:2017-11-24

修改稿日期:2017-12-19

网络出版日期:--

作者单位    点击查看

池俊杰:北京航天控制仪器研究所, 北京 100094
姜诗琦:北京航天控制仪器研究所, 北京 100094
张琳:北京航天控制仪器研究所, 北京 100094
于淼:北京航天控制仪器研究所, 北京 100094
王军龙:北京航天控制仪器研究所, 北京 100094

联系人作者:王军龙(wjl_casc@126.com)

备注:池俊杰(1987-), 男, 博士, 工程师, 主要从事高功率光纤激光器研发方面的研究。E-mail: 18810925933@189.cn

【1】Lu L B, Wang H P, Guan Y C, et al. Laser microfabrication of biomedical devices[J]. Chinese Journal of Lasers, 2017, 44(1): 0102005.
卢立斌, 王海鹏, 管迎春, 等. 激光微加工技术制备生物医用器械的现状与进展[J]. 中国激光, 2017, 44(1): 0102005.

【2】Gan Q J, Jiang B X, Zhang P D, et al. Research progress of high average power solid-state lasers[J]. Laser & Optoelectronics Progress, 2017, 54(1): 010003.
甘啟俊, 姜本学, 张攀德, 等. 高平均功率固体激光器研究进展[J]. 激光与光电子学进展, 2017, 54(1): 010003.

【3】Jiang M, Ma P F, Zhou P, et al. Performance of laser beam combination system based on brightness[J]. Acta Optica Sinica, 2017, 37(7): 0714001.
姜曼, 马鹏飞, 周朴, 等. 基于亮度的激光光束合成系统性能[J]. 光学学报, 2017, 37(7): 0714001.

【4】Ye J F, Hong Y J, Wang G Y, et al. Research progress in micro-laser plasma propulsion[J]. Chinese Optics, 2011, 4(4): 319-326.
叶继飞, 洪延姬, 王广宇, 等. 激光等离子体微推进技术的研究进展[J]. 中国光学, 2011, 4(4): 319-326.

【5】Zhu M Z, Chen Y, Tan C Y, et al. Development of foreign spaceborne laser[J]. Infrared and Laser Engineering, 2012, 41(12): 3241-3248.
朱孟真, 程勇, 谭朝勇, 等. 国外空间激光的发展现状[J]. 红外与激光工程, 2012, 41(12): 3241-3248.

【6】Cheng Y, Guo Y L, Tang H, et al. Development trend of tactical laser weapons[J]. Laser & Optoelectronics Progress, 2016, 53(11): 110004.
程勇, 郭延龙, 唐璜, 等. 战术激光武器的发展动向[J]. 激光与光电子学进展, 2016, 53(11): 110004.

【7】Shen Z C, Yan D K. Present status and prospects of space radiation environmental engineering[J]. Spacecraft Environment Engineering, 2014, 31(3): 229-240.
沈自才, 闫德葵. 空间辐射环境工程的现状及发展趋势[J]. 航天器环境工程, 2014, 31(3): 229-240.

【8】Gilbert R M. Photobleaching of radiation-induced color centers in a germania-doped glass fiber[J]. IEEE Transactions on Nuclear Science, 1982, 29(6): 1484-1488.

【9】Berghmans F, Brichard B, Fernandez A F, et al. An introduction to radiation effects on optical components and fiber optic sensors[M]∥Bock W J, Gannot I, Tanev S. Optical Waveguide Sensing and Imaging, Dordrecht: Springer, 2008: 127-165.

【10】Brichard B, Borgermans P, Fernandez A F, et al. Radiation effect in silica optical fiber exposed to intense mixed neutron-gamma radiation field[J]. IEEE Transactions on Nuclear Science, 2001, 48(6): 2069-2073.

【11】Huang H Q, Zhao N, Chen G, et al. Effects of γ-radiation on Yb-doped fiber[J]. Acta Physica Sinica, 2014, 63(20): 200201.
黄宏琪, 赵南, 陈瑰, 等. γ射线辐照对掺Yb光纤材料性能的影响[J]. 物理学报, 2014, 63(20): 200201.

【12】Wang W, Wang X F, Li J, et al. Experiment on performance of erbium-doped fiber source for high performance fiber-optic gyroscope in a space irradiation environment[J]. Infrared and Laser Engineering, 2012, 41(7): 1826-1830.
王巍, 王学峰, 李晶, 等. 高精度光纤陀螺用掺饵光纤光源辐照性能试验[J]. 红外与激光工程, 2012, 41(7): 1826-1830.

【13】Griscom D L. Self-trapped holes in pure silica glass: a history of their discovery and characterization and an example of their critical significance to industry[J]. Journal of Non-Crystalline Solids, 2006, 352(23/24/25): 2601-2617.

【14】Griscom D L. Trapped-electron centers in pure and doped glassy silica: a review and synthesis[J]. Journal of Non-Crystalline Solids, 2011, 357(8): 1945-1962.

【15】Jin J, Xu R M, Liu J X, et al. Effect of radiation dose on radiation-induced attenuation and temperature dependence in optical fiber[J]. Acta Photonica Sinica, 2013, 42(11): 1272-1276.
金靖, 徐娆美, 刘纪勋, 等. 辐射剂量对光纤辐射致衰减及温度依赖性的影响[J]. 光子学报, 2013, 42(11): 1272-1276.

【16】Williams G M, Wright B M, Mack W D, et al. Projecting the performance of erbium-doped devices in a space irradiation environment[C]. SPIE, 1999, 3848: 271-280.

【17】Gusarov A I, Doyle D B. Modeling of gamma-radiation impact on transmission characteristics of optical glasses[C]. SPIE, 2002, 4547: 78-85.

引用该论文

Chi Junjie,Jiang Shiqi,Zhang Lin,Yu Miao,Wang Junlong. Experimental Study on Radiation Performance of Fiber Lasers[J]. Laser & Optoelectronics Progress, 2018, 55(6): 061406

池俊杰,姜诗琦,张琳,于淼,王军龙. 光纤激光器辐照性能实验研究[J]. 激光与光电子学进展, 2018, 55(6): 061406

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF