首页 > 论文 > 激光与光电子学进展 > 55卷 > 6期(pp:61003--1)

一种基于校正点云主成分坐标系的快速全局配准算法

A Fast Global Registration Algorithm Based on Correcting Point Cloud Principal Component Coordinate System

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

提出一种针对三维点云的快速全局配准算法, 用于估计两组相似点云在空间中的刚性位姿变化关系。首先通过计算两组点云的三个主成分向量, 配合各自中心点形成自身主成分(PC)坐标系。然后对两组点云分别进行坐标系转换, 再利用最近点的欧氏距离均值校正对应PC坐标轴的方向, 得到两组相似点云的大致位姿变化关系。经过上述粗配准后利用快速迭代最近点(ICP)算法, 即可实现任意位姿关系下两组点云的快速精确配准。实验结果表明, 该方法对任意两组形状和完整度相似的点云都可以实现任意位姿下的全局配准, 并且具有较高的速度与精确度。

Abstract

A fast global registration algorithm for 3D point cloud is proposed, which is used to estimate the rigid pose relationship of any two sets of similar point clouds in space. First, the three principal component vectors of two groups of point clouds are calculated to form their own principal component (PC) coordinate systems with their respective center points. Then, in order to obtain the approximate pose relationship between the two similar groups of point clouds, the coordinate transformations of the two groups of point clouds are respectively performed, and the directions corresponding to the PC coordinate axes are corrected by the mean of Euclidean distances of some close points. After the above coarse registration, the two groups of point clouds can be matched fast and accurately at arbitrary position by the fast iterative closest point (ICP) algorithm. The experimental results show that the proposed method can achieve global registration for any two sets of point clouds with similar shape and completeness at any position in any pose, and has higher speed and accuracy.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TP391.7

DOI:10.3788/lop55.061003

所属栏目:图像处理

基金项目:国家自然科学基金(61473090)、福建省高端设备制造合作创新中心基金

收稿日期:2017-10-27

修改稿日期:2017-11-30

网络出版日期:--

作者单位    点击查看

陈旭:福州大学机械工程及自动化学院, 福建 福州 350108
何炳蔚:福州大学机械工程及自动化学院, 福建 福州 350108

联系人作者:何炳蔚(mebwhe@fzu.edu.cn)

备注:陈旭(1993-), 男, 硕士研究生, 主要从事机器视觉方面的研究。E-mail: cx495086@outlook.com

【1】Besl P J, McKay N. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256.

【2】Chung Y C, Su I F, Lee C, et al. Multiple k nearest neighbor search[J]. World Wide Web, 2017, 20(2): 371-398.

【3】Elseberg J, Magnenat S, Siegwart R, et al. Comparison on nearest-neighbor-search strategies and implementations for efficient shape registration[J]. Journal of Software Engineering for Robotics, 2013, 22(3): 268-269.

【4】Lv L, Sun L. An improved registration algorithm based on geometric feature for the calibration of workpiece coordinate[C]. 35th Chinese Control Conference, Chengdu, Sichuan, 2016: 9475-9480.

【5】Abdi H, Williams L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews Computational Statistics, 2010, 2(4): 433-459.

【6】Tao H J, Da F P. Automatic registration algorithm for the point clouds based on the normal vector[J]. Chinese Journal of Lasers, 2013, 40(8): 0809001.
陶海跻, 达飞鹏. 一种基于法向量的点云自动配准方法[J]. 中国激光, 2013, 40(8): 0809001.

【7】Huang Y, Da F P, Tao H J. An automatic registration algorithm for point cloud based on feature extraction[J]. Chinese Journal of Lasers, 2015, 42(3): 0308002.
黄源, 达飞鹏, 陶海跻. 一种基于特征提取的点云自动配准算法[J]. 中国激光, 2015, 42(3): 0308002.

【8】Wei S B, Wang S Q, Zhou C H, et al. An iterative closest point algorithm based on biunique correspondence of point clouds for 3D reconstruction[J]. Acta Optica Sinica, 2015, 35(5): 0515003.
韦盛斌, 王少卿, 周常河, 等. 用于三维重建的点云单应性迭代最近点配准算法[J]. 光学学报, 2015, 35(5): 0515003.

【9】Ji S, Ren Y, Ji Z, et al. An improved method for registration of point cloud[J]. International Journal for Light and Electron Optics, 2017, 140: 451-458.

【10】He B W, Lin Z M, Li Y F. An automatic registration algorithm for the scattered point clouds based on the curvature feature[J]. Optics & Laser Technology, 2013, 46(1): 53-60.

【11】Zeng F X, Li L, Diao X P. Iterative closest point algorithm registration based on curvature features[J]. Laser & Optoelectronics Progress, 2017, 54(1): 011003.
曾繁轩, 李亮, 刁鑫鹏. 基于曲率特征的迭代最近点算法配准研究[J]. 激光与光电子学进展, 2017, 54(1): 011003.

【12】Chen T F, Gao C H, He B W. Point cloud registration method based on face-mating after denosing[J]. Applied Mechanics and Materials, 2014, 536: 131-135.

【13】Chen M L, Lu W X, Wan Y C, et al. Automatic registration of terrestrial point clouds without additional information[J]. Chinese Journal of Lasers, 2016, 43(4): 0414003.
陈茂霖, 卢维欣, 万幼川,等. 无附加信息的地面激光点云自动拼接方法[J]. 中国激光, 2016, 43(4): 0414003.

【14】Li R Z, Yang M, Tian Y, et al. Point cloud registration algorithm based on the ISS feature points combined with improved ICP algorithm[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111503.
李仁忠, 杨曼, 田瑜, 等. 基于ISS特征点结合改进ICP的点云配准算法[J]. 激光与光电子学进展, 2017, 54(11): 111503.

【15】Qiao C, Ding Y L, Xu Y S, et al. Image registration method based on geo-location information and precision analysis[J]. Acta Optica Sinica, 2017, 37(8): 0828001.
乔川, 丁亚林, 许永森, 等. 基于地理位置信息的图像配准方法及精度分析[J]. 光学学报, 2017, 37(8): 0828001.

【16】Wang G H, Li N, Li S. Enhanced histogram feature descriptor for automated point cloud registration[C]. 35th Chinese Control Conference, Chengdu, Sichuan, 2016: 7032-7037.

【17】Rusu R B, Blodow N, Beetz M. Fast point feature histograms (FPFH) for 3D registration[C]. International Conference on Robotics and Automation, Kobe, Japan, 2009: 3212-3217.

【18】Shu C X, He Y T, Sun Q K. Point cloud registration based on convolutional neural network[J]. Laser & Optoelectronics Progress, 2017, 54(3): 031001.
舒程珣, 何云涛, 孙庆科. 基于卷积神经网络的点云配准方法[J]. 激光与光电子学进展, 2017, 54(3): 031001.

【19】Myronenko A, Song X. Point set registration:coherent point drift[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(12): 2262-2275.

【20】Lu M, Zhao J, Guo Y, et al. A 3D point cloud registration algorithm based on fast coherent point drift[C]. Applied Imagery Pattern Recognition Workshop, Washington, USA, 2015: 1-6.

【21】Qu H B, Wang J Q, Li B, et al. Probabilistic model for robust affine and non-rigid point set matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(2): 371-384.

【22】Lawler E L, Wood D E. Branch-and-bound methods: a survey[J]. Operations Research, 1966, 14(4): 699-719.

【23】Yang J, Li H, Jia Y. GO-ICP: solving 3D registration efficiently and globally optimally[C]. International Conference on Computer Vision, Sydney, Australia, 2013: 1457-1464.

【24】Aiger D, Mitra N J, Cohenor D. 4-points congruent sets for robust pairwise surface registration[J]. ACM Transactions on Graphics, 2011, 27(3): 85.

【25】Lei H, Jiang G, Quan L. Fast descriptors and correspondence propagation for robust global point cloud registration[J]. IEEE Transactions on Image Processing, 2017, 26(8): 3614-3623.

【26】Mian A S, Bennamoun M, Owens R. Keypoint detection and local feature matching for textured 3D face recognition[J]. International Journal of Computer Vision, 2008, 79(1): 1-12.

引用该论文

Chen Xu,He Bingwei. A Fast Global Registration Algorithm Based on Correcting Point Cloud Principal Component Coordinate System[J]. Laser & Optoelectronics Progress, 2018, 55(6): 061003

陈旭,何炳蔚. 一种基于校正点云主成分坐标系的快速全局配准算法[J]. 激光与光电子学进展, 2018, 55(6): 061003

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF