首页 > 论文 > 激光与光电子学进展 > 55卷 > 6期(pp:61204--1)

基于直接相位测量术的系统参数标定方法

Calibration of System Parameters Based on Direct Phase Measuring Deflectometry

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于条纹反射的相位测量术被广泛用于获取镜面物体的表面三维形貌数据, 系统标定是相位测量术中重要的一步, 它直接决定了测量结果的精度。提出一种基于相位信息获得系统模型中未知参数的方法, 建立相位和深度间的直接关系, 并对比了采用相位信息和传统几何特征标识点棋盘格标定显示屏外部参数的准确度, 证明了在离焦状态下, 采用相位信息的方法具有更高的精度。使用标定好的系统测量了一个凹面镜和一个具有不连续反射表面的台阶工件, 得到系统测量结果的误差约为22 μm。实验结果表明所提方法可以精确地标定系统参数, 并能获得高精度的三维测量数据。

Abstract

Phase measuring deflectometry (PMD) based on fringe reflection has been widely studied as a way of obtaining three-dimensional shape of specular objects. System calibration is an important step, and it determines the accuracy of the measurement results. We propose a calibration method to obtain the system parameters based on phase information. As a result, it can build the relationship between the absolute phase map and depth data. A contrast experiment is done for verification about extrinsic parameters of the LCD screen by phase data and the checkerboard. The experiment shows that the method using phase data is more accurate when images are out of focus. Using the calibration system, we test a concave mirror and an artificial specular step with discontinuous reflective surface, and the error is about 22 μm. Experiment results show that the proposed method can precisely determine the system parameters, so that 3D shape of specular objects can be measured with a high accuracy.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TH741

DOI:10.3788/lop55.061204

所属栏目:仪器,测量与计量

基金项目:国家重点研发计划(2017YFF0106404)、国家自然科学基金(51675160)、河北省应用基础研究计划重点基础研究(15961701D)、河北省高层次人才资助项目(GCC2014049)、河北省人才工程培养经费(A201500503)、江苏省双创人才资助项目、European Horizon 2020 through Marie Sklodowska-Curie Individual Fellowship Scheme (707466-3DRM)

收稿日期:2017-10-08

修改稿日期:2017-12-21

网络出版日期:--

作者单位    点击查看

邓小婷:河北工业大学机械工程学院, 天津 300130
高楠:河北工业大学机械工程学院, 天津 300130
张宗华:河北工业大学机械工程学院, 天津 300130

联系人作者:张宗华(zhzhang@hebut.edu.cn)

备注:邓小婷(1993-), 女, 硕士, 主要从事光学三维测量方面的研究。E-mail: 1240650883@qq.com

【1】Xu J, Liu S L, Wan A, et al. An absolute phase technique for 3D profile measurement using four-step structured light pattern[J]. Optics & Lasers in Engineering, 2012, 50(9): 1274-1280.

【2】Da J, Qu H M, Tao T Y, et al. Real-time three-dimensional measurement composite of epipolar constraint and speckle correlation[J]. Acta Optica Sinaca, 2016, 36(10): 1012003.
笪健, 屈惠明, 陶天阳,等. 结合极线约束和散斑相关的实时三维测量方法[J]. 光学学报, 2016, 36(10): 1012003.

【3】Wu Q Y, Zeng Z, Zhang B C, et al. A 360° three-dimensional measurement system and its calibration[J]. Chinese Journal of Lasers, 2017, 44(4): 0404002.
吴庆阳, 曾增, 张佰春, 等. 一种新的360°三维测量系统及标定技术[J]. 中国激光, 2017, 44(4): 0404002.

【4】Liu Y K, Su X Y, Wu Q Y. Three-dimensional shape measurement for specular surface based on fringe reflection[J]. Acta Optica Sinaca, 2006, 26(11): 1636-1640.
刘元坤, 苏显渝, 吴庆阳. 基于条纹反射的类镜面三维面形测量方法[J]. 光学学报, 2006, 26(11): 1636-1640.

【5】Ou P, Wang T, Li R X. A three-dimensional teeth measurement system based on structured light[J]. Laser & Optoelectronics Progress, 2016, 53(1): 011102.
欧攀, 王婷, 李瑞祥. 一种基于结构光的牙齿三维测量系统[J]. 激光与光电子学进报, 2016, 53(1): 011102.

【6】Zhang H, Ji L S, Liu S G, et al. Three-dimensional shape measurement of a highly reflected, specular surface with structured light method[J]. Applied Optics, 2012, 51(31): 7724-7732.

【7】Yuan T, Zhang F, Tao X P, et al. Test of optical mirror surface using fringe reflection system[J]. Acta Photonica Sinica, 2015, 44(9): 86-91.
袁婷, 张峰, 陶小平, 等. 条纹反射法检测光学反射镜面形[J]. 光子学报, 2015, 44(9): 86-91.

【8】Sun X, Liu Y, Yu X, et al. Three-dimensional measurement for specular reflection surface based on reflection component separation and priority region filling theory[J]. Sensors, 2017, 17(1): 215.

【9】Xiao Y L, Su X Y, Chen W J. Specular shape measurement with phase measuring deflectometry based on bundle adjustment[J]. Acta Optica Sinaca, 2011, 31(12): 1212007.
肖永亮, 苏显渝, 陈文静. 基于光束法平差的相位测量偏折术镜面面形测量[J]. 光学学报, 2011, 31(12): 1212007.

【10】Cao H L, Cheng Z H, Yu L Y. Reconstruction of 3D surface of mirror by processing fringe pattern[J]. Optics and Precision Engineering, 2007, 15(4): 599-603.
曹华梁, 程祖海, 余亮英. 用干涉条纹图像重建反射镜的三维面形[J]. 光学 精密工程, 2007, 15(4): 599-603.

【11】Song L, Yue H M, Wu Y X, et al. Surface profile measurement of specular cell phone cases on variable lateral scales by fringe reflection technique[J]. Journal of Optoelectronics·Laser, 2012, 23(11): 2154-2162.
宋雷, 岳慧敏, 吴雨祥, 等. 条纹反射法测量镜面手机外壳多尺度三维形貌[J]. 光电子·激光, 2012, 23(11): 2154-2162.

【12】Xiao Y L, Su X Y, Chen W J. Flexible geometrical calibration for fringe-reflection 3D measurement[J]. Optics Letters, 2012, 37(4): 620-622.

【13】Ren H Y, Gao F, Jiang X Q. Iterative optimization calibration method for stereo deflectometry[J]. Optics Express, 2015, 23(17): 22060-22068.

【14】Zhang Z H, Liu Y, Huang S J, et al. Full-field 3D shape measurement of specular surfaces by direct phase to depth relationship[C]. Proceedings of the SPIE, 2016, 23: 100230X.

【15】Liu Y, Huang S J, Zhang Z H, et al. Full-field 3D shape measurement of discontinuous specular objects by direct phase measuring deflectometry[J]. Scientific Reports, 2017, 7(1): 10293.

【16】Zhang Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.

【17】Xing D K, Da F P, Zhang H. Research and application of locating of circular target with high accuracy[J]. Chinese Journal of Scientific Instrument, 2009, 30(12): 2593-2598.
邢德奎, 达飞鹏, 张虎. 圆形目标精密定位方法的研究与应用[J]. 仪器仪表学报, 2009, 30(12): 2593-2598.

【18】Chen X Y, Ma Z, Hu Y, et al. A new method for accurate location of concentric circles in visual measurement[J]. Journal of Optoelectronics·Laser, 2013, 24(8): 1524-1528.
陈新禹, 马孜, 胡英, 等. 视觉测量中圆形标记点的高精度定位[J]. 光电子·激光, 2013, 24(8): 1524-1528.

【19】Zhang Z H, Huang S J, Meng S S, et al. A simple, flexible and automatic 3D calibration method for a phase calculation-based fringe projection imaging system[J]. Optics Express, 2013, 21(10): 12218-12227.

【20】Wang Z Y, Nguyen D A, Barnes J C. Some practical considerations in fringe projections profilometry[J]. Optics and Lasers in Engineering, 2010, 48(2): 218-225.

【21】Zheng D L, Da F P. Gamma correction method for accuracy enhancement in grating projection profilometry[J]. Acta Optica Sinica, 2011, 31(5): 0512003.
郑东亮, 达飞鹏. 提高数字光栅投影测量系统精度gamma校正技术[J]. 光学学报, 2011, 31(5): 0512003.

【22】Liu Y K, Olesch E, Yang Z,et al. A one-dimensional phase-shift technique based on dual-frequency crossed fringe for phase measuring deflectometry[J]. Chinese Journal of Lasers, 2015, 42(3): 0308005.
刘元坤, Olesch E, 杨征, 等. 基于双频正交光栅一维相移的相位测量偏折术[J]. 中国激光, 2015, 42(3): 0308005.

【23】Zhang Z H, Guo J, Wang Y M, et al. Parallel-alignment and correction of two displays in three-dimensional measuring system of specular surfaces[J]. Optics and Precision Engineering, 2017, 25(2): 289-296.
张宗华, 郭佼, 王月敏, 等. 镜面物体三维测量系统中两显示屏的平行正对校正[J]. 光学 精密工程, 2017, 25(2): 289-296.

【24】Creath K. V phase-measurement interferometry techniques[J]. Progress in Optics, 1998, 26: 349-393.

引用该论文

Deng Xiaoting,Gao Nan,Zhang Zonghua. Calibration of System Parameters Based on Direct Phase Measuring Deflectometry[J]. Laser & Optoelectronics Progress, 2018, 55(6): 061204

邓小婷,高楠,张宗华. 基于直接相位测量术的系统参数标定方法[J]. 激光与光电子学进展, 2018, 55(6): 061204

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF