首页 > 论文 > 激光与光电子学进展 > 55卷 > 6期(pp:61701--1)

改进的体素生长算法在心脏局部血管提取中的应用

Application of Improved Voxels Growth Algorithm in Cardiac Local Vascular Extraction

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

为了对传统体素生长算法加以改进, 提取心脏局部血管, 在三维心脏组织的感兴趣局部血管上勾画初始体素种子点, 将初始体素的相邻体素中灰度直方图相似的体素添加到生长体素集合中, 作为新的种子点按照生长规则继续寻找相似体素。为了防止体素生长过程中出现泄漏, 设置终止规则限制体素生长的边界, 进而找到感兴趣血管包括的全部体素。通过对体素生长算法的生长规则和终止条件的进一步改进, 在一定程度上解决了传统体素生长算法交互性差、运行不实时等问题, 测试结果表明该算法的准确度高、稳健性好, 是心血管疾病临床治疗过程中有效的影像辅助工具。

Abstract

The traditional algorithm of voxels growth is improved to ultimately achieve the purpose of extracting the local blood vessels of the heart. The initial voxels seed spots are delineated on the local blood vessels of interest within the three-dimensional model of the heart. The initial voxels set adds new voxels, which are similar to the initial voxels set in terms of their gray-scale histogram. Newly added voxels as new seed spots continue to look for similar voxels according to growth rules. In order to prevent leakage problems during voxel growth, we sets the termination rule to limit the boundaries of voxels growth, and discover all the voxels included in the blood vessels. The improvement of growth rules and termination conditions of the voxels growth algorithm, to a certain extent, solves certain problems of the traditional voxels growth algorithm such as poor interaction and not real-time running. The algorithm has the advantages of high accuracy and good robustness, hence it is proved to be an effective imaging aid tool for the clinical treatment of cardiovascular diseases.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:K445.3

DOI:10.3788/lop55.061701

所属栏目:医用光学与生物技术

基金项目:国家自然科学基金(61771266, 81571753)、包头市青年创新人才项目、赛尔互联网创新项目、内蒙古科技大学校内创新基金(2014QDL045)

收稿日期:2017-10-08

修改稿日期:2017-12-27

网络出版日期:--

作者单位    点击查看

任国印:内蒙古科技大学信息工程学院, 内蒙古 包头 014010
吕晓琪:内蒙古科技大学信息工程学院, 内蒙古 包头 014010
杨楠:包头医学院, 内蒙古 包头 014010
喻大华:内蒙古科技大学信息工程学院, 内蒙古 包头 014010
张晓峰:内蒙古科技大学信息工程学院, 内蒙古 包头 014010
周涛:内蒙古科技大学信息工程学院, 内蒙古 包头 014010

联系人作者:杨楠(812216021@qq.com)

备注:任国印(1985-), 男, 硕士, 讲师, 主要从事医学图像处理方面的研究。E-mail: renguoyin@imust.edu.cn

【1】Ma C X, Hu J J, Yan B, et al. Optimization of fan-bean CT filtered back projection reconstruction algorithm[J]. Laser & Optoelectronics Progress, 2012, 49(9): 091103.
马晨欣, 胡君杰, 闫镔, 等. CT扇形束滤波反投影图像重建算法优化[J]. 激光与光电子学进展, 2012, 49(9): 091103.

【2】Hui Y, Wu J S, Yu B, et al. Construction and biomechanical analysis of integrated three-dimensional optical model of L3-L4 segment of spine[J].Chinese Journal of Lasers, 2017, 44(7): 0707001.
惠宇, 武君胜, 鱼滨, 等. 脊柱L3~L4段的一体化三维光学模型构建及其生物力学分析[J]. 中国激光, 2017, 44(7): 0707001.

【3】Yang Y R, Dai Y. Based on the RMSE and CC to evaluate the effect of eye aberration on retinal imaging quality[J]. Acta Optica Sinica, 2017, 37(3): 0333001.
杨彦荣, 戴云. 一种评价人眼像差对视网膜成像质量影响的新方法[J]. 光学学报, 2017, 37(3): 0333001.

【4】Wang F, Yue Y, Kang Y, et al. Fast and automatic segmentation of ascending aorta in MSCT volume data[J]. International Congress on Image & Signal Processing, 2009, 45(10): 1-5.

【5】Han C H, Cheng Y Z. Coronary image segmentation based on fuzzy clustering method and improved C-V model[J]. Beijing Biomedical Engineering, 2017, 36(3): 262-267.
韩承航, 程云章. 基于模糊聚类和改进C-V模型的冠状动脉图像分割方法[J]. 北京生物医学工程, 2017, 36(3): 262-267.

【6】Ding P L. Research of diabetic retinal image analysis algorithms based on deep learning[D]. Beijing: Beijing Jiao Tong University, 2017.
丁蓬莉. 基于深度学习的糖尿病性视网膜图像分析算法研究[D]. 北京: 北京交通大学, 2017.

【7】O′Brien J F, Ezquerra N F. Automated segmentation of coronary vessels in angiographic image sequences utilizing temporal, spatial, and structural constraints[J]. Visualization in Biomedical Computing, 1994, 14(2): 657-662.

【8】Schmitt H, Grass M, Rasche V, et al. An X-ray-based method for the determination of the contrast agent propagation in 3-D vessel structures[J]. IEEE Transactions on Medical Imaging, 1996, 15(3): 377-379.

【9】Li X L, Zhou G H, Luo S Q. Simplified fuzzy connectedness approach for segmentation of vessel images[J]. Journal of Computer-Aided Design & Computer Graphic, 2003, 15(10): 1224-1229.
李雪丽, 周果宏, 罗述谦. 用于血管图像分割的简化模糊连接算法[J]. 计算机辅助设计与图形学学报, 2003, 15(10): 1224-1229.

【10】Cao Y H, Jin Q H, Chen Y D, et al. Automatic identification of side branch and main vascular measurements in intravascular optical coherence tomography images[C]∥2017 IEEE 14th International Symposium on Biomedical Imaging, 2017: 16968796.

【11】Zhai W M, Hu C W, Zhang W H, et al. A dynamic is adaptive 3D voxel growing segmentation algorithm for pulmonary CT images[J]. Journal of Image and Graphics, 2005, 10(10): 1269-1274.
翟伟明, 胡成文, 张伟宏, 等. 基于动态自适应体素生长的肺部CT图像3维分割算法[J]. 计算机图像图形学报, 2005, 10(10): 1269-1274.

【12】Huang P, Wang C C. Volume and complexity bounded simplification of solid model represented by binary space partition[J]. ACM Symposium on Solid & Physical Modeling, 2010, 12(4): 1158-1162.

【13】Qian F, Ma X L, Yang S Q, et al. Research and improvement of marching cubes algorithm[J]. Computer Engineering and Applications, 2010, 46(34): 177-180.
钱峰, 马秀丽, 杨胜齐, 等. 移动立方体算法的研究和改进[J]. 计算机工程与应用, 2010, 46(34): 177-180.

【14】Qiu Q T, Duan J H, Gong G Z, et al. Liver auto-segmentation based on three-dimensional dynamic region growing algorithm[J]. Chinese Journal of Medical Physics, 2017, 34(7): 660-665.
仇清涛, 段敬豪, 巩贯忠, 等. 基于三维动态区域生长算法的肝脏自动分割[J]. 中国医学物理学杂志, 2017, 34(7): 660-665.

引用该论文

Ren Guoyin,Lü Xiaoqi,Yang Nan,Yu Dahua,Zhang Xiaofeng,Zhou Tao. Application of Improved Voxels Growth Algorithm in Cardiac Local Vascular Extraction[J]. Laser & Optoelectronics Progress, 2018, 55(6): 061701

任国印,吕晓琪,杨楠,喻大华,张晓峰,周涛. 改进的体素生长算法在心脏局部血管提取中的应用[J]. 激光与光电子学进展, 2018, 55(6): 061701

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF