首页 > 论文 > 激光与光电子学进展 > 55卷 > 6期(pp:60002--1)

激发等离激元Fano共振的金属类圆盘纳米结构体系

Plasmonic Fano Resonance in Metallic Disk-Like Nanostructure System

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

Fano共振效应是量子体系中分立态能级和连续态能带相互重叠, 在光谱中表现出非对称线型的共振散射现象, 最初由U. Fano经过严格的理论验证得到。近年来, 在表面等离激元结构体系中也陆续发现了等离激元Fano共振现象, 它是由结构支持的辐射模式和非辐射模式相互作用产生的。等离激元Fano共振具有光谱线宽较窄、辐射损耗小以及能够将入射场局限在结构表面并使近场显著增强等优势, 因此成为了纳米光子学中的研究热点。在支持Fano共振激发的等离激元结构中, 类圆盘结构具有较宽的辐射模式线宽, 可以和结构支持的一个或多个弱辐射模式耦合, 因此可以有效激发单一或多重等离激元Fano共振, 并能够实现对Fano共振的有效调制。此外, 类圆盘纳米结构体系在拥有高度几何对称性或规则的多个体数量条件下, 仍然可以激发高强度的等离激元Fano共振模式, 这进一步拓展了Fano共振纳米结构的设计思路。我们总结了近年来激发等离激元Fano共振模式的类圆盘结构组成的体系, 其中包括单一圆盘结构、异类二聚体圆盘结构和多聚体类圆盘结构等, 并对这些体系支持的Fano共振的产生机理和激发方式进行了详细的分析。另外, 对支持等离激元Fano共振的类圆盘纳米结构的应用也进行了简单的论述。

Abstract

Fano resonance, theoretically explained by U. Fano, is a type of resonant scattering phenomenon in the quantum system that results from interference between discrete and continuous state energy, and gives rise to an asymmetrical line-shape. In recent years, plasmonic Fano resonance has been found in the plasmonic structure system, which is produced by the interaction between the superradiation mode and the subradiation mode supported by the structure. Because the Fano resonance has narrow frequency linewidth, weak radiative losses, and strong near-field enhancement on the surface of structures, it has attracted much attention in the field of photonics. The disk-like structure which has the ability of supporting wider superradiation linewidth can couple with one or more subradiation patterns supported by the structure to excite and modulate single or multiple Fano resonances effectively. Moreover, the disk-like nanostructured systems can still excite high-intensity plasmonic Fano resonance under the case of highly geometric symmetry or regularly multi-individual composition, which can further expand the design of Fano resonant nanostructures. In this paper, we summarized the disk-like Fano resonance nanostructure, including single disk structure, heterogeneous dimer disk structure and multipolymer disk structure, and presented the mechanism and excitation of the plasmonic Fano resonance. In addition, we also briefly discussed the applications of disk-like Fano resonance nanostructure.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O43

DOI:10.3788/lop55.060002

所属栏目:综述

收稿日期:2017-12-13

修改稿日期:2017-12-28

网络出版日期:--

作者单位    点击查看

崔健:长春理工大学超快光学实验室, 吉林 长春 130022
季博宇:长春理工大学超快光学实验室, 吉林 长春 130022
林景全:长春理工大学超快光学实验室, 吉林 长春 130022

联系人作者:季博宇(ji_boyu@yahoo.com)

备注:崔健(1991-),男,硕士研究生,主要从事等离激元Fano共振方面的研究。E-mail: 287018037@qq.com

【1】Sarrazin M, Vigneron J P. Bounded modes to the rescue of optical transmission[J]. Europhysics News, 2007, 38(3): 27-31.

【2】Tribelsky M I, Flach S, Miroshnichenko A E, et al. Light scattering by a finite obstacle and Fano resonances[J]. Physical Review Letters, 2008, 100(4): 043903.

【3】Miroshnichenko A E, Flach S, Gorbach A V, et al. Fano resonances: a discovery that was not made 100 years ago[J]. Optics & Photonics News, 2008, 19(12): 48.

【4】Li M J, Li X M. Group theory of Fano resonance spectra in system of C3v and C4v metallic multi-nanoparticles-thin film[J]. Acta Optica Sinica, 2016, 36(10): 1024001.
李梦君, 李小明. C3v和C4v金属纳米多颗粒-薄膜系统的Fano共振光谱的群论[J]. 光学学报, 2016, 36(10): 1024001.

【5】Feng H, Sonnefraud Y, van Dorpe P, et al. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance[J]. Nano Letters, 2008, 8(11): 3983-3988.

【6】Khan A D. Enhanced plasmonic Fano-like resonances in multilayered nanoellipsoid[J]. Applied Physics A, 2016, 122(4): 1-7.

【7】Panaro S, Nazir A, Razzari L, et al. Plasmonic moon: a Fano-like approach for squeezing the magnetic field in the infrared[J]. Nano Letters, 2015, 15(9): 6128-6134.

【8】Yang Y M, Wang W Y, Boulesbaa A, et al. Nonlinear Fano-resonant dielectric metasurfaces[J]. Nano Letters, 2015, 15(11): 7388-7393.

【9】Katie E, Hopkins B, Staude I, et al. Observation of Fano resonances in all-dielectric nanoparticle oligomers[J]. Small, 2014, 10(10): 1985-1990.

【10】Yang D J, Yang Z J, Li Y Y, et al. Tunable Fano resonance in rod-ring plasmonic nanocavities[J]. Plasmonics, 2014, 10(2): 263-269.

【11】Nordlander P, Oubre C, Prodan E, et al. Plasmon hybridization in nanoparticle dimers[J]. Nano Letters, 2004, 4(5): 899-903.

【12】Chen Y, Luo P, Tian Y N, et al. Fano resonance slow light characteristics of metal-dielectric-metal waveguide coupled cavity with metallic double-slit[J]. Acta Optica Sinica, 2017, 37(9): 0924002.
陈颖, 罗佩, 田亚宁, 等. 含金属双缝的金属-电介质-金属波导耦合环形腔Fano共振慢光特性研究[J]. 光学学报, 2017, 37(9): 0924002.

【13】Alemayehu N K, Ji B Y, Lin J Q, et al. Controlling optical field enhancement of a nanoring dimer for plasmon-based application[J]. Journal of Optics, 2016, 18(5): 055007.

【14】Guo Q B, Liu X F, Qiu J R, et al. Research progress of ultrafast nonlinear optics and applications of nanostructures with localized plasmon resonance[J]. Chinese Journal of Lasers, 2017, 44(7): 0703005.
郭强兵, 刘小峰, 邱建荣, 等. 局域表面等离子体纳米结构的超快非线性光学及其应用研究进展[J]. 中国激光, 2017, 44(7): 0703005.

【15】Zhang S, Genov D A, Wang Y, et al. Plasmon-induced transparency in metamaterials[J]. Physical Review Letters, 2008, 101(4): 047401.

【16】Verellen N, Sonnefraud Y, Sobhani H, et al. Fano resonances in individual coherent plasmonic nanocavities[J]. Nano Letters, 2009, 9(4): 1663-1667.

【17】Huang Y H, Xue B P. Research of multiple Fano resonances in plasmonic octamer clusters[J]. Laser & Optoelectronics Progress, 2015, 52(6): 062401.
黄运欢, 薛保平. 等离子体八聚体中多重法诺共振现象的研究[J]. 激光与光电子学进展, 2015, 52(6): 062401.

【18】Huang Y H, Yin L Y, Cai D J, et al. Modulation of Fano resonance in plasmonic quadrumer clusters[J]. Laser & Optoelectronics Progress, 2015, 52(2): 022401.
黄运欢, 殷丽艳, 蔡东进, 等. 等离子体四聚体中法诺共振的调制[J]. 激光与光电子学进展, 2015, 52(2): 022401.

【19】Arif E C, Hatice A. Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing[J]. ACS Nano, 2012, 6(11): 9989-9995.

【20】Li J, Liu T Z, Zheng H, et al. Higher order Fano resonances and electric field enhancements in disk-ring plasmonic nanostructures with double symmetry breaking[J]. Plasmonics, 2014, 9(6): 1439-1445.

【21】Wang J, Fan C, He J, et al. Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity[J]. Optics Express, 2013, 21(2): 2236-2244.

【22】Wu C, Khanikaev A B, Adato R, et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers[J]. Nature Materials, 2012, 11(1): 69-75.

【23】Yanik A A, Cetin A E, Huang M, et al. Seeing protein monolayers with naked eye through plasmonic Fano resonances[J]. Proceedings of the National Academy of Sciences, 2011, 108(29): 11784-11789.

【24】Hao F, Nordlander P, Sonnefraud Y, et al. Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing[J]. ACS Nano, 2009, 3(3): 643-652.

【25】Ye J, Wen F, Sobhani H, et al. Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS[J]. Nano Letters, 2012, 12(3): 1660-1667.

【26】He J, Fan C, Ding P, et al. Near-field engineering of Fano resonances in plasmonic assembly for maximizing CARS enhancements[J]. Scientific Reports, 2016, 6: 20777.

【27】Gersten J. Disk plasma oscillations[J]. The Journal of Chemical Physics, 1982, 77(12): 6285-6288.

【28】Melchior P, Kilbane D, Vesseur E J, et al. Photoelectron imaging of modal interference in plasmonic whispering gallery cavities[J]. Optics Express, 2015, 23(25): 31619-31626.

【29】Yang J, Sun Q, Yu H, et al. Spatial evolution of the near-field distribution on planar gold nanoparticles with the excitation wavelength across dipole and quadrupole modes[J]. Photonics Research, 2017, 5(3): 187-193.

【30】Yannick S, Verellen N, Sobhani H, et al. Experimental realization of subradiant, superradiant, and Fano Resonances in ring/disk plasmonic nanocavities[J]. ACS Nano, 2010, 4(3): 1664-1670.

【31】Zhang Q, Wen X L, Li G, et al. Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities[J]. ACS Nano, 2013, 7(12): 11071-11078.

【32】Fano U. Effects of configuration interaction on intensities and phase shifts[J]. Physical Review, 1961, 124(6): 1866-1878.

【33】Jonathan A F, Kui B, Chi H W, et al. Fano-like interference in self-assembled plasmonic quadrumer clusters[J]. Nano Letters, 2010, 10(11): 4680-4685.

【34】Miroshnichenko A E, SergeJ F, Yuri S K, et al. Fano resonances in nanoscale structures[J]. Review of Modern Physics, 2010, 82(3): 2257-2298.

【35】Wan W, Zheng W, Chen Y F, et al. From Fano-like interference to superscattering with a single metallic nanodisk[J]. Nanoscale, 2014, 6(15): 9093-9102.

【36】Cai D J, Huang Y H, Wang W J, et al. Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry[J]. Journal of Physical Chemistry C, 2015, 119(8): 4252-4260.

【37】Fang Z Y, Cai J Y, Nordlander P, et al. Removing a wedge from a metallic nanodisk reveals a Fano resonance[J]. Nano Letters, 2011, 11(10): 4475-4479.

【38】Zhang S, Li G C, Chen Y Q, et al. Pronounced Fano resonance in single gold split nanodisks with 15-nm split gaps for intensive second harmonic generation[J]. ACS Nano, 2016, 10(12): 11105-11114.

【39】He J, Fan C Z, Wang J Q, et al. A giant localized field enhancement and high sensitivity in an asymmetric ring by exhibiting Fano resonance[J]. Journal of Optics, 2013, 15(2): 025007.

【40】Wang H, Wu Y P, Lassiter B, et al. Symmetry breaking in individual plasmonic nanoparticles[J]. Proceeding of the National Academy of Sciences of the United States of America, 2006, 103(29): 10856-10860.

【41】Shang W Y, Xiao F J, Zhu W R, et al. Fano resonance with high local field enhancement under azimuthally polarized excitation[J]. Scientific Reports, 2017, 7(1): 1049.

【42】Shu J, Gao W L, Xu Q F, et al. Fano resonance in concentric ring apertures[J]. Lasers & Electro-Optics, 2013, 21(9): 11101-11106.

【43】Bachelier G, Russier-Antoine I, Benichou E, et al. Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles[J]. Physical Review Letters, 2008, 101(19): 197401.

【44】Pena-Rodriguez O, Pal U, Campoyquiles M, et al. Enhanced Fano resonance in asymmetrical Au∶Ag heterodimers[J]. Journal of Physical Chemistry C, 2011, 115(14): 6410-6414.

【45】Hao F, Nordlander P, Burnett M T, et al. Enhanced tenability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities[J]. Physical Review B, 2007, 76(24): 245417.

【46】Zhang Y, Jia T Q, Zhang H M, et al. Fano resonances in disk-ring plasmonic nanostructure: strong interaction between bright dipolar and dark multipolar mode[J]. Optics Letters, 2012, 37(23): 4919-4921.

【47】Zhang Q, Xiao J J. Multiple reversals of optical binding force in plasmonic disk-ring nanostructures with dipole-multipole Fano resonances[J]. Optics Letters, 2013, 38(20): 4240-4243.

【48】Rahmani M, Tahmasebi T, Lin Y, et al. Influence of plasmon destructive interferences on optical properties of gold planar quadrumers[J]. Nanotechnology, 2011, 22(24): 245204.

【49】Rahmani M, Lukiyanchuk B, Nguyen T T V, et al. Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers. [J]. Optical Materials Express, 2011, 19(6): 4949-4956.

【50】Lassiter J B, Sobhani H, Fan J A, et al. Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability[J]. Nano Letters, 2010, 10(8): 3184-3189.

【51】Liu S D, Yang Z, Liu R P, et al. Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings[J]. ACS Nano, 2012, 6(7): 6260-6271.

【52】Fang Z Y, Wang Y M, Liu Z, et al. Plasmon-induced doping of graphene[J]. ACS Nano, 2012, 6(11): 10222-10228.

【53】Dregely D, Hentschel M, Giessen H, et al. Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters[J]. ACS Nano, 2011, 5(10): 8202-8211.

【54】Shan H Y, Zu S, Fang Z Y, et al. Research progress in ultrafast dynamics of plasmonic hot electrons[J]. Laser & Optoelectronics Progress, 2017, 54(3): 030002.
单杭永, 祖帅, 方哲宇, 等. 表面等离激元热电子超快动力学研究进展[J]. 激光与光电子学进展, 2017, 54(3): 030002.

【55】Li B W, Zu S, Fang Z Y, et al. Single nanoparticle plasmonic electro-optic modulator based on MoS2 monolayers [J]. ACS Nano, 2017, 11(10): 9720-9727.

【56】Fang Z Y, Liu Z, Wang Y M, et al. Graphene-antenna sandwich photodetector[J]. Nano Letters, 2012, 12(7): 3808-3813.

【57】Zu S, Bao Y J, Fang Z Y, et al. Planar plasmonic chiral nanostructures[J]. Nanoscale, 2016, 8(7): 3900-3905.

【58】Chang W S, Lassiter J B, Swanglap P, et al. A plasmonic Fano switch[J]. Nano Letters, 2012, 12(9): 4977-4982.

引用该论文

Cui Jian,Ji Boyu,Lin Jingquan. Plasmonic Fano Resonance in Metallic Disk-Like Nanostructure System[J]. Laser & Optoelectronics Progress, 2018, 55(6): 060002

崔健,季博宇,林景全. 激发等离激元Fano共振的金属类圆盘纳米结构体系[J]. 激光与光电子学进展, 2018, 55(6): 060002

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF