首页 > 论文 > 激光与光电子学进展 > 55卷 > 6期(pp:61407--1)

光丝间距对304不锈钢激光-MIG复合焊接接头影响的研究

Influence of Laser-Arc Distance on Joint of 304 Stainless Steel by Laser-MIG Hybrid Welding

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

采用10 kW碟片激光器对5 mm厚304不锈钢板进行激光-MIG复合焊对接, 研究光丝间距对焊缝成形和力学性能的影响, 并分析电弧对焊缝显微组织和显微硬度的作用机制。结果表明, 光丝间距影响激光热源和电弧热源之间的协同效应及熔滴过渡的稳定性。当光丝间距为1 mm时, 熔滴过渡稳定, 焊缝成形良好, 拉伸强度为631.33 MPa, 达到母材强度的98.6%, 为最佳的匹配距离。焊缝显微组织由奥氏体与骨架状和板条状铁素体组成, 焊缝上部(Ⅰ部)组织比焊缝中部(Ⅱ部)和下部(Ⅲ部)细小。焊缝上部区域显微硬度与母材相当, 约为175 HV, 中部区域硬度约为180 HV, 下部区域硬度约为190 HV, 均低于热影响区。

Abstract

304 stainless steel joints with 5 mm thick are welded by laser-MIG hybrid welding with 10 kW disc laser. The influence of the laser-arc distance on the forming and mechanical properties of the welding seam is investigated, and the influence mechanism of the arc on microstructure and microhardness of the welding seam is analyzed. The results show that an optimized laser-arc distance not only have a synergistic effect between the laser heat source and the arc heat source, but also increases the stability of the droplet transfer. When the laser-arc distance is 1 mm, which makes an optimized distance, the droplet transition is stable and the welding seam is formed well. The tensile strength is 631.33 MPa, which is reaching to 98.6% of the strength of base metal. The microstructure of the welding seam is composed of austenite and skeletal and lath ferrites, and the microstructure of the upper part (Ⅰpart) of the welding seam is smaller than that of the middle part (Ⅱpart) and lower part (Ⅲ part) of the welding seam. The microhardness for the upper part of the welding seam is about 175 HV, which is equivalent to that of the base metal, the microhardness for the middle part of the welding seam is about 180 HV, and the microhardness for the lower part of the welding seam is about 190 HV, which are all lower than that of the heat affected zone.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TG456.7

DOI:10.3788/lop55.061407

所属栏目:激光器与激光光学

基金项目:第三批外专千人计划(WQ20124400119)、广东省省级科技计划项目(2016B050501002)、激光与等离子先进制造技术创新团队资助项(201101C0104901263)

收稿日期:2017-12-19

修改稿日期:2017-12-26

网络出版日期:--

作者单位    点击查看

韩丽梅:沈阳工业大学材料科学与工程学院, 辽宁 沈阳 110870广东省焊接技术研究所(广东省中乌研究院)广东省现代焊接技术重点实验室, 广东 广州 510650
蔡得涛:广东省焊接技术研究所(广东省中乌研究院)广东省现代焊接技术重点实验室, 广东 广州 510650
张宇鹏:广东省焊接技术研究所(广东省中乌研究院)广东省现代焊接技术重点实验室, 广东 广州 510650
张楠楠:沈阳工业大学材料科学与工程学院, 辽宁 沈阳 110870

联系人作者:张宇鹏(zhangyp@gwi.gd.cn)

备注:韩丽梅(1991-), 女, 硕士研究生, 主要从事激光-MIG复合焊接工艺方面的研究。E-mail: 1536887990@qq.com

【1】Steen W M, Eboo M. Arc augmented laser welding[J]. Metal Construction, 1979, 11(7): 332-333.

【2】Jiang Y H, Yang S L, Wang Y, et al. Research status of laser arc hybrid welding technology[J]. Welding Technology, 2016, 45(3): 1-4.
姜亦帅, 杨尚磊, 王妍, 等. 激光-电弧复合焊接技术的研究现状[J]. 焊接技术, 2016, 45(3): 1-4.

【3】Song X H, Jin X Z, Chen S Q, et al. Laser arc hybrid welding and its application in car body manufacturing[J]. Laser Technology, 2015, 39(2): 259-265.
宋新华, 金湘中, 陈胜迁, 等. 激光-电弧复合焊接及应用于车身制造的进展[J]. 激光技术, 2015, 39(2): 259-265.

【4】Hu L H, Huang J, Wu Y X, et al. Study on coupling mechanism and metal transfer in laser double-wire MIG arc hybrid welding[J]. Chinese Journal of Lasers, 2016, 43(6): 0602005.
胡连海, 黄坚, 吴毅雄, 等. 激光-双MIG电弧复合焊耦合机制及熔滴过渡研究[J]. 中国激光, 2016, 43(6): 0602005.

【5】Fersini M, Sorrentino S, Zilli G. Duplex stainless steel for bridges construction: comparison between SAW and laser-GMA hybrid welding[J]. Welding in the World, 2010, 54(5/6): 123-133.

【6】Inose K, Owaki M K, Kanbayashi M J, et al. Functional assessment of laser arc hybrid welded joints and their application for bridge construction[J]. Welding in the World, 2012, 56(7/8): 118-124.

【7】Wang S L, Fang F Z. High power laser and its development[J]. Laser & Optoelectronics Progress, 2017, 54 (9): 090005.
王狮凌, 房丰洲. 大功率激光器及其发展[J]. 激光与光电子学进展, 2017, 54(9): 090005.

【8】Gan Q J, Jiang B X, Zhang P D, et al. Research progress of high average power solid-state lasers[J]. Laser & Optoelectronics Progress, 2017, 54(1): 010003.
甘啟俊, 姜本学, 张攀德, 等. 高平均功率固体激光器研究进展[J]. 激光与光电子学进展, 2017, 54(1): 010003.

【9】Ning J, Zhang L J, Na S J, et al. Numerical study of the effect of laser-arc distance on laser energy coupling in pulsed Nd∶YAG laser/TIG hybrid welding[J]. International Journal of Advanced Manufacturing Technology, 2017, 91(1): 1129-1143.

【10】Liu F D, Zhang H, Wang Y Q. The influence of the laser-arc distance on the formation and microstructure of the welding seam by laser arc hybrid welding[C]∥ Abstract of Proceedings of the Sixteenth National Welding Academic Conference, 2011: 18-22.
刘凤德, 张宏, 王宇琪. 热源间距对激光-电弧复合焊焊缝成形和组织的影响[C]∥ 第十六次全国焊接学术会议论文摘要集, 2011: 18-22.

【11】Liu T, Yan F, Liu S, et al. Study of narrow gap laser-metal insert gas hybrid welding GH909 alloy [J]. Chinese Journal of Lasers, 2015, 42(9): 0903008.
刘婷, 闫飞, 柳桑, 等. GH909的窄间隙激光-熔化极气体保护焊复合焊接工艺研究[J]. 中国激光, 2015, 42(9): 0903008.

【12】Hu B, Ouden G D. Laser induced stabilisation of the welding arc[J]. Science & Technology of Welding & Joining, 2005, 10(1): 76-81.

【13】Makino Y, Shiihara Y, Asai S. Combination welding between CO2 laser beam and MIG arc[J]. Welding International, 2002, 16(2): 99-103.

【14】Suutala N, Takalo T, Moisio T. The relationship between solidification and microstructure in austenitic and austenitic-ferritic stainless steel welding seam[J]. Metallurgical & Materials Transactions A, 1979, 10(4): 512-514.

【15】Lippold J C. Kotecki D J. Welding metallurgy and weldability of stainless steels[M]. Chen J H, Transl. Beijing: China Machine Press, 2008: 140-150.
Lippold J C, Kotecki D J. 不锈钢焊接冶金学及焊接性[M]. 陈剑红, 译. 北京: 机械工业出版社, 2008: 140-150.

【16】Karhu M, Kujanp V. Solidification cracking studies in multi pass laser hybrid welding of thick section austenitic stainless steel[M]∥Hot Cracking Phenomena in welding seam Ⅲ. Berlin Heidelberg: Springer, 2011: 161-182.

【17】Rao B R, Rao K P, Iyer K J L. Effect of chemical composition and ferrite content on room temperature SCC behavior of austenitic welding seam metals[J]. Corrosion, 1993, 49(3): 248-255.

【18】Zhang X G, Lei Z L, Guo X J, et al. Microstructure and properties of laser welding seam of aluminum alloy strengthened by electric current[J]. Transactions of the China Welding Institution, 2011, 32(8): 17-20.
张新戈, 雷正龙, 郭新建,等. 铝合金电流强化激光焊接焊缝组织及性能[J]. 焊接学报, 2011, 32(8): 17-20.

【19】Wang T J. Welding procedure and microstructure and properties of the welded joints of 6009 aluminum alloy laser-MIG hybrid welding[D]. Chengdu: Southwest Petroleum University, 2015: 31-36.
王同举. 6009铝合金激光-MIG复合焊焊接工艺及接头组织性能研究[D]. 成都: 西南石油大学, 2015: 31-36.

【20】Li Y J, Li J N. Laser welding/cutting/cladding technology[M]. Beijing: Chemical Industry Press, 2016: 77-78.
李亚江, 李嘉宁. 激光焊接/切割/熔覆技术[M]. 北京: 化学工业出版社, 2016: 77-78.

引用该论文

Han Limei,Cai Detao,Zhang Yupeng,Zhang Nannan. Influence of Laser-Arc Distance on Joint of 304 Stainless Steel by Laser-MIG Hybrid Welding[J]. Laser & Optoelectronics Progress, 2018, 55(6): 061407

韩丽梅,蔡得涛,张宇鹏,张楠楠. 光丝间距对304不锈钢激光-MIG复合焊接接头影响的研究[J]. 激光与光电子学进展, 2018, 55(6): 061407

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF