首页 > 论文 > 中国激光 > 45卷 > 6期(pp:601004--1)

基于保偏光纤光栅的低噪声外腔半导体激光器

Low-Noise External Cavity Semiconductor Lasers Based on Polarization-Maintaining Fiber Bragg Gratings

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

研制了1550 nm波段的窄线宽、低噪声混合集成外腔半导体激光器,将保偏光纤布拉格光栅(FBG)作为反馈元件与半导体增益芯片进行耦合,并利用FBG斜边处的大群时延特性将半导体激光器的线宽压窄。所得到的蝶形封装激光器原型器件实现了稳定的单纵模、单偏振激光的保偏输出,在1 kHz处积分线宽为15.9 kHz的输出功率≥30 mW,洛伦兹线宽为4.85 kHz,本征线宽为4.06 kHz,相对强度噪声≤-155 dB·Hz-1@1 MHz,偏振消光比>25 dB,无跳模电流调谐范围≥8 GHz,无跳模温度调谐范围≥14 GHz,6 h功率稳定度为1.7%,频率漂移量<50 MHz。

Abstract

A narrow-linewidth, low-noise hybrid integrated external cavity laser at 1550 nm is fabricated, the polarization maintaining fiber Bragg grating (FBG) as optical feedback component is coupled with the semiconductor gain chip, and the laser linewidth is reduced by the large group delay characteristics at the sloping side of the FBG reflectance spectrum. The butterfly-packaged laser realizes a single longitudinal mode and polarization-maintaining output of the single polarization laser, including the output power ≥30 mW with integral linewidth of 15.9 kHz at 1 kHz, the Lorentz linewidth of 4.85 kHz, the intrinsic linewidth of 4.06 kHz, the relative intensity noise ≤-155 dB·Hz-1 at 1 MHz, the polarization extinction ratio >25 dB, the current tuning range without mode hopping ≥8 GHz, the temperature tuning range without mode hopping ≥14 GHz, the power stability of 1.7% within 6 h, and the frequency variations <50 MHz.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:TN248.4

DOI:10.3788/cjl201845.0601004

所属栏目:激光器件与激光物理

基金项目:国家自然科学基金(61775225,61535014,61405218,61405212)、中国科学院实验室创新基金(CXJJ-17S010)

收稿日期:2017-10-26

修改稿日期:2017-12-20

网络出版日期:--

作者单位    点击查看

孙广伟:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800中国科学院大学, 北京 100049
魏芳:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
张丽:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800中国科学院大学, 北京 100049
陈迪俊:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
张茜:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800中国科学院大学, 北京 100049
陈高庭:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
辛国锋:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
皮浩洋:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
杨飞:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
蔡海文:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800
瞿荣辉:中国科学院上海光学精密机械研究所上海市全固态激光器与应用技术重点实验室, 上海 201800

联系人作者:魏芳(weifang@siom.ac.cn)

备注:孙广伟(1980—),男,博士研究生,助理研究员,主要从事集成光学器件方面的研究。 E-mail: gwsun@siom.ac.cn

【1】Ye Q, Pan Z Q, Wang Z Y, et al. Progress of research and applications of phase-sensitive optical time domain reflectometry[J]. Chinese Journal of Lasers, 2017, 44(6): 0600001.
叶青, 潘政清, 王照勇, 等. 相位敏感光时域反射仪研究和应用进展[J]. 中国激光, 2017, 44(6): 0600001.

【2】Zhu R, Zhou J, Liu J Q, et al. Solid state tunable single-frequency laser based on non-planar ring oscillator[J]. Chinese Journal of Lasers, 2011, 38(11): 1102011.
朱韧, 周军, 刘继桥, 等. 可调谐单频非平面环形腔固体激光器[J]. 中国激光, 2011, 38 (11): 1102011.

【3】Numata K, Jeffrey R C, Jordan C. Fiber laser development for LISA[J]. Journal of Physics: Conference Series, 2010, 228: 012043.

【4】Stolpner L, Lee S, Li S, et al. Low noise planar external cavity laser for interferometric fiber optic sensors[C]. SPIE, 2008, 7004: 700457.

【5】Alalusi M, Brasil P, Lee S, et al. Low noise planar external cavity laser for interferometric fiber optic sensors[C]. SPIE, 2009, 7316: 73160X.

【6】Numata K, Camp J, Krainak M A, et al. Performance of planar-waveguide external cavity laser for precision measurements[J]. Optics Express, 2010, 18(22): 22781-22788.

【7】Numata K, Alalusi M, Stolpner L, et al. Characteristics of the single-longitudinal-mode planar-waveguide external cavity diode laser at 1064 nm[J]. Optics Letters, 2014, 39(7): 2101-2104.

【8】Ilchenko V S, Dale E, Liang W, et al. Compact tunable kHz-linewidth semiconductor laser stabilized with a whispering-gallery mode microresonator[C]. SPIE, 2011, 7913: 79131G.

【9】Dale E, Liang W, Eliyahu D, et al. On phase noise of self-injection locked semiconductor lasers[C]. SPIE, 2014, 8960: 89600X.

【10】Fan Y W, Oldenbeuving R M, Roeloffzen C G, et al. 290 Hz Intrinsic Linewidth from an Integrated Optical Chip-based Widely Tunable InP-Si3N4 Hybrid Laser[C]∥Proceedings of Conference on Lasers and Electro-Optics, CLEO: Applications and Technology, San Jose, California,USA, 2017: JTh5C. 9.

【11】Bartolo R E, Kirkendall C K, Kupershmidt V, et al. Achieving narrow linewidth low-phase noise external cavity semiconductor lasers through the reduction of 1/f noise[C]. SPIE, 2006, 6133: 61330I.

【12】Loh W, O′donnell F J, Plant J J, et al. Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL)[J]. IEEE Photonics Technology Letters, 2011, 23(14): 974-976.

【13】Pan B W, Yu L Q, Lu D, et al. 20 kHz narrow linewidth fiber Bragg grating external cavity semiconductor laser[J]. Chinese Journal of Lasers, 2015, 42(5): 0502007.
潘碧玮, 余力强, 陆丹, 等. 20 kHz窄线宽光纤光栅外腔半导体激光器[J]. 中国激光, 2015, 42(5): 0502007.

【14】Lynch S G, Holmes C, Berry S A, et al. External cavity diode laser based upon an FBG in an integrated optical fiber platform[J]. Optics Express, 2016, 24(8): 8391-8398.

【15】Zhang L, Wei F, Sun G, et al. Thermal tunable narrow linewidth external cavity laser with thermal enhanced FBG[J]. IEEE Photonics Technology Letters, 2017, 29(4): 385-388.

【16】Xu D, Lu B, Yang F, et al. Narrow linewidth single-frequency laser noise measurement based on a 3×3 fiber coupler[J]. Chinese Journal of Lasers, 2016, 43(1): 0102004.
徐丹, 卢斌, 杨飞, 等. 基于3×3耦合器的窄线宽单频激光器噪声测量技术[J]. 中国激光, 2016, 43(1): 0102004.

【17】Xu D, Yang F, Chen D J, et al. Laser phase and frequency noise measurement by Michelson interferometer composed of a 3×3 optical fiber coupler[J]. Optics Express, 2015, 23(17): 22386-22393.

引用该论文

Sun Guangwei,Wei Fang,Zhang Li,Chen Dijun,Zhang Xi,Chen Gaoting,Xin Guofeng,Pi Haoyang,Yang Fei,Cai Haiwen,Qu Ronghui. Low-Noise External Cavity Semiconductor Lasers Based on Polarization-Maintaining Fiber Bragg Gratings[J]. Chinese Journal of Lasers, 2018, 45(6): 0601004

孙广伟,魏芳,张丽,陈迪俊,张茜,陈高庭,辛国锋,皮浩洋,杨飞,蔡海文,瞿荣辉. 基于保偏光纤光栅的低噪声外腔半导体激光器[J]. 中国激光, 2018, 45(6): 0601004

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF