Photonics Research, 2018, 6 (6): 06000579, Published Online: Jul. 2, 2018  

Extraordinary characteristics for one-dimensional parity-time-symmetric periodic ring optical waveguide networks Download: 526次

Author Affiliations
1 MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
2 Guangzhou Key Laboratory for Special Fiber Photonic Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
3 School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
4 Department of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China
Abstract
In this paper, we design a one-dimensional (1D) parity-time-symmetric periodic ring optical waveguide network (PTSPROWN) and investigate its extraordinary optical characteristics. It is found that quite different from traditional vacuum/dielectric optical waveguide networks, 1D PTSPROWN cannot produce a photonic ordinary propagation mode, but can generate simultaneously two kinds of photonic nonpropagation modes: attenuation propagation mode and gain propagation mode. It creates neither passband nor stopband and possesses no photonic band structure. This makes 1D PTSPROWN possess richer spontaneous PT-symmetric breaking points and causes interesting extremum spontaneous PT-symmetric breaking points to appear, where electromagnetic waves can create ultrastrong extraordinary transmission, reflection, and localization, and the maximum can arrive at 6.6556×1012 and is more than 7 orders of magnitude larger than the results reported previously. 1D PTSPROWN may possess potential in designing high-efficiency optical energy saver devices, optical amplifiers, optical switches with ultrahigh monochromaticity, and so on.

Yan Zhi, Xiangbo Yang, Jiaye Wu, Shiping Du, Peichao Cao, Dongmei Deng, Chengyi Timon Liu. Extraordinary characteristics for one-dimensional parity-time-symmetric periodic ring optical waveguide networks[J]. Photonics Research, 2018, 6(6): 06000579.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!