首页 > 论文 > Photonics Research > 6卷 > 6期(pp:601--1)

Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion [Cover Paper]

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

High flatness, wide bandwidth, and high-coherence properties of supercontinuum (SC) generation in fibers are crucial in many applications. It is challenging to achieve SC spectra in a combination of the properties, since special dispersion profiles are required, especially when pump pulses with duration over 100 fs are employed. We propose an all-solid microstructured fiber composed only of hexagonal glass elements. The optimized fiber possesses an ultraflat all-normal dispersion profile, covering a wide wavelength interval of approximately 1.55 μm. An SC spectrum spanning from approximately 1030 to 2030 nm (corresponding to nearly one octave) with flatness <3 dB is numerically generated in the fiber with 200 fs pump pulses at 1.55 μm. The results indicate that the broadband ultraflat SC sources can be all-fiber and miniaturized due to commercially achievable 200-fs fiber lasers. Moreover, the SC pulses feature high coherence and a single pulse in the time domain, which can be compressed to 13.9-fs pulses with high quality even for simple linear chirp compensation. The Fourier-limited pulse duration of the spectrum is 3.19 fs, corresponding to only 0.62 optical cycles.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.1364/PRJ.6.000601

基金项目:National Natural Science Foundation of China (NSFC)10.13039/501100001809 (61475171, 11374084, 61705244, 61307056); Natural Science Foundation of Shanghai10.13039/100007219 (17ZR1433900, 17ZR1434200).

收稿日期:2018-01-26

录用日期:2018-04-13

网络出版日期:2018-04-14

作者单位    点击查看

Chunlei Huang:Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, China
Meisong Liao:Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Wanjun Bi:Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, China
Xia Li:Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Lili Hu:Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Long Zhang:Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Longfei Wang:Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Guanshi Qin:State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
Tianfeng Xue:Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, ChinaUniversity of Chinese Academy of Sciences, Beijing 100049, China
Danping Chen:Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Weiqing Gao:School of Electronic Science & Applied Physics, Hefei University of Technology, Hefei 230009, China

联系人作者:Meisong Liao(liaomeisong@siom.ac.cn)

【1】J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78 , 1135–1184 (2006).

【2】M. Tsuzuki, L. Jin, M. Yamanaka, V. Sonnenchein, H. Tomita, A. Sato, T. Ohara, Y. Sakakibara, E. Omoda, H. Kataura, T. Iguchi, and N. Nishizawa, “Midinfrared optical frequency comb based on difference frequency generation using high repetition rate Er-doped fiber laser with single wall carbon nanotube film,” Photon. Res. 4 , 313–317 (2016).

【3】M. Klimczak, B. Siwicki, A. Heidt, and R. Buczynski, “Coherent supercontinuum generation in soft glass photonic crystal fibers,” Photon. Res. 5 , 710–727 (2017).

【4】A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34 , 764–775 (2017).

【5】X. Liu, J. Laegsgaard, R. Iegorov, A. S. Svane, F. O. Ilday, H. Tu, S. A. Boppart, and D. Turchinovich, “Nonlinearity-tailored fiber laser technology for low-noise, ultra-wideband tunable femtosecond light generation,” Photon. Res. 5 , 750–761 (2017).

【6】Z. Zheng, D. Ouyang, J. Zhao, M. Liu, S. Ruan, P. Yan, and J. Wang, “Scaling all-fiber mid-infrared supercontinuum up to 10 W-level based on thermal-spliced silica fiber and zblan fiber,” Photon. Res. 4 , 135–139 (2016).

【7】S. Vyas, T. Tanabe, M. Tiwari, and G. Singh, “Chalcogenide photonic crystal fiber for ultraflat mid-infrared supercontinuum generation,” Chin. Opt. Lett. 14 , 123201 (2016).

【8】B. B. Yan, J. H. Yuan, X. X. Sang, K. R. Wang, and C. X. Yu, “Combined nonlinear effects for UV to visible wavelength generation in a photonic crystal fiber,” Chin. Opt. Lett. 14 , 050603 (2016).

【9】J. C. Knight, “Photonic crystal fibres,” Nature 424 , 847–851 (2003).

【10】P. St. J. Russell, “Photonic crystal fibers,” Science 299 , 358–362 (2003).

【11】J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21 , 1547–1549 (1996).

【12】M. Chemnitz, J. Wei, C. Jain, B. P. Rodrigues, T. Wieduwilt, J. Kobelke, L. Wondraczek, and M. A. Schmidt, “Octave-spanning supercontinuum generation in hybrid silver metaphosphate/silica step-index fibers,” Opt. Lett. 41 , 3519–3522 (2016).

【13】M. Liu, B. Zhao, X. Yang, and J. Hou, “Seven-core photonic liquid crystal fibers for simultaneous mode shaping and temperature sensing,” Chin. Opt. Lett. 15 , 060601 (2017).

【14】P. S. Maji, and R. Das, “Designing broadband fiber optic parametric amplifier based on near-zero single ZDW PCF with ultra-flat nature,” Chin. Opt. Lett. 15 , 070606 (2017).

【15】N. Nishizawa, and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B 24 , 1786–1792 (2007).

【16】C. Strutynski, P. Froidevaux, F. Desevedavy, J. C. Jules, G. Gadret, A. Bendahmane, K. Tarnowski, B. Kibler, and F. Smektala, “Tailoring supercontinuum generation beyond 2 μm in step-index tellurite fibers,” Opt. Lett. 42 , 247–250 (2017).

【17】Z. K. Dong, Y. R. Song, R. Q. Xu, Y. Zheng, J. R. Tian, and K. X. Li, “Broadband spectrum generation with compact Yb-doped fiber laser by intra-cavity cascaded Raman scattering,” Chin. Opt. Lett. 15 , 071408 (2017).

【18】A. V. Husakou, and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87 , 203901 (2001).

【19】A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27 , 550–559 (2010).

【20】S. Demmler, J. Rothhardt, A. M. Heidt, A. Hartung, E. G. Rohwer, H. Bartelt, J. Limpert, and A. Tunnermann, “Generation of high quality, 1.3 cycle pulses by active phase control of an octave spanning supercontinuum,” Opt. Express 19 , 20151–20158 (2011).

【21】A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express 19 , 7742–7749 (2011).

【22】A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19 , 3775–3787 (2011).

【23】L. Liu, T. L. Cheng, K. Nagasaka, H. T. Tong, G. S. Qin, T. Suzuki, and Y. Ohishi, “Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion,” Opt. Lett. 41 , 392–395 (2016).

【24】A. M. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E. G. Rohwer, J. Limpert, and A. Tunnermann, “High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber,” Opt. Express 19 , 13873–13879 (2011).

【25】C. L. Huang, M. S. Liao, W. J. Bi, X. Li, L. F. Wang, T. F. Xue, L. Zhang, D. P. Chen, L. L. Hu, Y. Z. Fang, and W. Q. Gao, “Asterisk-shaped microstructured fiber for an octave coherent supercontinuum in a sub-picosecond region,” Opt. Lett. 43 , 486–489 (2018).

【26】Y. Liu, Y. B. Zhao, J. Lyngso, S. X. You, W. L. Wilson, H. H. Tu, and S. A. Boppart, “Suppressing short-term polarization noise and related spectral decoherence in all-normal dispersion fiber supercontinuum generation,” J. Lightwave Technol. 33 , 1814–1820 (2015).

【27】J. J. Miret, E. Silvestre, and P. Andres, “Octave-spanning ultraflat supercontinuum with soft-glass photonic crystal fibers,” Opt. Express 17 , 9197–9203 (2009).

【28】I. A. Sukhoivanov, S. O. Iakushev, O. V. Shulika, E. Silvestre, and M. V. Andres, “Design of all-normal dispersion microstructured optical fiber on silica platform for generation of pulse-preserving supercontinuum under excitation at 1550 nm,” J. Lightwave Technol. 35 , 3772–3779 (2017).

【29】S. K. Chatterjee, S. N. Khan, and P. R. Chaudhuri, “Designing a two-octave spanning flat-top supercontinuum source by control of nonlinear dynamics through multi-order dispersion engineering in binary multi-clad microstructured fiber,” J. Opt. Soc. Am. B 32 , 1499–1509 (2015).

【30】M. Diouf, A. Ben Salem, R. Cherif, H. Saghaei, and A. Wague, “Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy,” Appl. Opt. 56 , 163–169 (2017).

【31】T. Martynkien, D. Pysz, R. Stepien, and R. Buczynski, “All-solid microstructured fiber with flat normal chromatic dispersion,” Opt. Lett. 39 , 2342–2345 (2014).

【32】M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Heidt, C. Radzewicz, and R. Buczynski, “Coherent supercontinuum generation up to 2.3 μm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion,” Opt. Express 22 , 18824–18832 (2014).

【33】K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, A. Anuszkiewicz, P. Bejot, F. Billard, O. Faucher, B. Kibler, and W. Urbanczyk, “Polarized all-normal dispersion supercontinuum reaching 2.5 μm generated in a birefringent microstructured silica fiber,” Opt. Express 25 , 27452–27463 (2017).

【34】K. Tarnowski, T. Martynkien, P. Mergo, K. Poturaj, G. Sobon, and W. Urbanczyk, “Coherent supercontinuum generation up to 2.2 μm in an all-normal dispersion microstructured silica fiber,” Opt. Express 24 , 30523–30536 (2016).

【35】F. Li, Q. Li, J. H. Yuan, and P. K. A. Wai, “Highly coherent supercontinuum generation with picosecond pulses by using self-similar compression,” Opt. Express 22 , 27339–27354 (2014).

【36】G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

【37】N. L. Boling, A. J. Glass, and A. Owyoung, “Empirical relationships for predicting non-linear refractive-index changes in optical solids,” IEEE J. Quantum Electron. 14 , 601–608 (1978).

【38】M. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica glasses for holey fibers,” J. Lightwave Technol. 23 , 2046–2054 (2005).

【39】O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203 , 19–26 (1996).

【40】V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, “Raman effects in the infrared supercontinuum generation in soft-glass PCFs,” Appl. Phys. B 87 , 37–44 (2007).

【41】C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25 , 1938–1948 (2008).

【42】A. M. Heidt, A. Hartung, and H. Bartelt, “Generation of ultrashort and coherent supercontinuum light pulses in all-normal dispersion fibers,” in The Supercontinuum Laser Source , AlfanoR. R., ed. (Springer, 2016), pp. 247–280.

【43】M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18 , 14778–14787 (2010).

【44】F. Krausz, and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81 , 163–234 (2009).

【45】M. Miranda, T. Fordell, C. Arnold, A. L’Huillier, and H. Crespo, “Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges,” Opt. Express 20 , 688–697 (2012).

【46】Y. Liu, H. Tu, and S. A. Boppart, “Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression,” Opt. Lett. 37 , 2172–2174 (2012).

引用该论文

Chunlei Huang, Meisong Liao, Wanjun Bi, Xia Li, Lili Hu, Long Zhang, Longfei Wang, Guanshi Qin, Tianfeng Xue, Danping Chen, and Weiqing Gao, "Ultraflat, broadband, and highly coherent supercontinuum generation in all-solid microstructured optical fibers with all-normal dispersion," Photonics Research 6(6), 601 (2018)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF